
Getting started with NumPy

John W. Shipman
2012-06-22 11:50

Abstract

An introduction to some common functions of NumPy, a numerical computation module for
the Python programming language.

This publication is available in Web form1 and also as a PDF document2. Please forward any
comments to tcc-doc@nmt.edu.

Table of Contents
1. Introduction .. 1
2. Importing NumPy .. 2

2.1. Adding NumPy to your namespace ... 2
2.2. Practicing safe namespace hygiene .. 2

3. Basic types .. 3
4. ndarray: The N-dimensional array .. 4

4.1. One-dimensional arrays ... 4
4.2. The arange() function: Arithmetic progression ... 5
4.3. Two-dimensional arrays ... 6
4.4. Three or more dimensions .. 7
4.5. Array attributes ... 8
4.6. Array methods .. 9

5. Universal functions (ufuncs) .. 10
6. Dot and cross products ... 11
7. Linear algebra functions .. 12

1. Introduction
The purpose of Python's NumPy module is to bring Python's power and elegance to bear on mathemat-
ical and scientific problems.

Major parts of this product include:

• NumPy provides basic numerical functions, especially for multi-dimensional arrays and mathematical
computation.

• SciPy builds on NumPy to provide features for scientific applications.

1 http://www.nmt.edu/tcc/help/pubs/lang/numpy/
2 http://www.nmt.edu/tcc/help/pubs/lang/numpy/numpy.pdf

1Getting started with NumPyNew Mexico Tech Computer Center

About this document
This document has been generated with RenderX XEP.
					Visit http://www.renderx.com/ to learn more about
					RenderX family of software solutions for digital
					typography.

http://www.nmt.edu/tcc/help/pubs/lang/numpy/
http://www.nmt.edu/tcc/help/pubs/lang/numpy/numpy.pdf
http://www.nmt.edu/tcc/help/pubs/lang/numpy/
http://www.nmt.edu/tcc/help/pubs/lang/numpy/numpy.pdf

• matplotlib provides plotting and related graphic display capabilities. Its function set is intended to be
quickly usable by people who are familiar with Matlab, although it is built entirely on top of Python
and thus can be integrated with any other Python-based application.

• ipython is an enhanced conversational interface that allows you to interact with Python in parallel
with a running application.

The starting point on the Web is http://www.numpy.org/. The documentation page3 takes you to
almost complete documentation, but the full PDF-formatted manual is available only by purchase. Pur-
chasing the manual supports the ongoing development and maintenance of the product.

NMT has purchased the manual, Travis E. Oliphant's Guide to NumPy4. This PDF document is available
only from sites in the nmt.edu domain; please respect the restricted terms of distribution as described
on the first page.

To make life a little easier for those just starting out, the present document is an attempt to present a
few of the most basic concepts and facilities in a tutorial. Before undertaking any significant projects,
please at least skim the table of contents of Dr. Oliphant's full documentation: there is a lot of function-
ality there that might save you a lot of work.

2. Importing NumPy
The NumPy module provides hundreds of useful mathematical functions, as well as constants like pi
(π) and e (the base of natural logarithms).

There are two ways to make these functions and constants available to your program.

• Section 2.1, “Adding NumPy to your namespace” (p. 2): for small programs and experimenting.
• Section 2.2, “Practicing safe namespace hygiene” (p. 2): this is how the professionals do it.

2.1. Adding NumPy to your namespace
If your program is primarily doing computation, and you don't use a lot of other modules, place this
statement with the other import statements at the top of your script, and it will add all the names from
the numpy module to your namespace.

from numpy import *

You can then refer directly to the constants like pi and functions like array() and arange(). Example:

>>> from numpy import *
>>> print pi, e
3.14159265359 2.71828182846
>>> print arange(0.0, 1.0, 0.1)
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

2.2. Practicing safe namespace hygiene
When you start developing larger applications, and especially when you start using multiple modules
like scipy (SciPy) and the matplotlib plotting system, it can become difficult to remember which
functions came from which module.

3 http://docs.scipy.org/doc/
4 http://www.nmt.edu/tcc/help/lang/python/numpy/numpybook.pdf

New Mexico Tech Computer CenterGetting started with NumPy2

http://www.numpy.org/
http://docs.scipy.org/doc/
http://www.nmt.edu/tcc/help/lang/python/numpy/numpybook.pdf
http://docs.scipy.org/doc/
http://www.nmt.edu/tcc/help/lang/python/numpy/numpybook.pdf

The cure for this problem is to import the entire module and then refer to things inside the module using
the syntax “M.thing” where M is the name of the module and thing is the name of the item within
the module.

Place a line like this with your other import statements:

import numpy as np

Then you use np.array() to create an array, or use np.arange() to create an arithmetic progression
array, and so forth.

In the rest of this document, we will assume that you use the second form of import. For example:

>>> import numpy as np
>>> print np.pi, np.e
3.14159265359 2.71828182846
>>> print np.arange(0.0, 1.0, 0.1)
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

The term namespace hygiene refers to the commendable practice of keeping items from different
namespaces separate, so you can tell what comes from where.

3. Basic types
NumPy has a much richer set of data types than standard Python. The type object for a NumPy type is
called a dtype.

Each type has a type name. This table shows the names and describes their functions. Seven of these
types are functionally identical to standard Python types, so their names have an underscore (_) appended
to differentiate them. The exact meanings may depend on the underlying hardware platform.

Boolean, True or False.bool_

One-byte signed integer.byte

C-language short integer.short

C-language int integer.intc

Python int.int_

Signed integers with 8, 16, and 32 bits respectively.int8, int16, int32

Signed arbitrary-length integer.longlong

An integer sized to hold a memory address.intp

Unsigned 8-bit integer.ubyte

Unsigned C short.ushort

Unsigned C int.uintc

Unsigned integer.uint

Unsigned integers of 8, 16, and 32 bits respectively.uint8, uint16, uint32

Unsigned arbitrary-length integer.ulonglong

Unsigned integer big enough to hold an address.uintp

Single-precision float.single

Python float.float_

3Getting started with NumPyNew Mexico Tech Computer Center

Double-precision float.longfloat

Floats of 32 and 64 bits, respectively.float32, float64

Single-precision complex.csingle

Python complex.complex_

Double-precision complex.clongfloat

For arrays of arbitrary Python objects.object_

Eight-bit character string.str_

Thirty-two-bit character string.unicode_

4. ndarray:The N-dimensional array
Use the np.array() constructor to create an array with any number of dimensions.

np.array(object, dtype=None)

object
Values to be used in creating the array. This can be a sequence (to create a 1-d array), a sequence of
sequences (for a 2-d array), a sequence of sequences of sequences, and so on. Each sequence may
be either a list or a tuple.

The object argument may also be an existing array. The new array will be a copy, and you can
use the dtype argument to force the copy to be a different type.

dtype
To force the new array to be a given type, use one of the type words as the second argument. For
example, array([1,2,3], dtype=np.float_) will give you an array with those three values
converted to floating-point type.

4.1. One-dimensional arrays
To create a vector of values, use np.array(S), where S is a sequence (list or tuple). Unlike Python
lists, when you print an array, it doesn't show commas between the elements.

>>> import numpy as np
>>> d1=np.array([2.4, -1.5, 3.0, 8.8])
>>> print d1
[2.4 -1.5 3. 8.8]

To retrieve one value from a vector, use normal Python indexing: position 0 is the first element, position
2 is the third element, and so on.

>>> print d1[0]
2.4
>>> print d1[2]
3.0

You can use normal Python slicing on arrays as well.

>>> print d1[1:3]
[-1.5 3.]

New Mexico Tech Computer CenterGetting started with NumPy4

If you want to force the array to use a specific type, use the dtype=D keyword argument to np.array(),
where D is one of the dtype type objects described in Section 3, “Basic types” (p. 3). In the example
below, the first array will have int (integer) type, and the second one will have type float.

>>> print np.array([0, 1, 2, 3])
[0 1 2 3]
>>> print np.array([0, 1, 2, 3], dtype=np.float_)
[0. 1. 2. 3.]

If you don't have all the values together at once that you need to build an array, you can instead create
an array of zeroes and fill the values in later. The argument to the np.zeros() function is a sequence
containing the dimensions. In this example, we use [6] as the argument; this gives us a one-dimensional
array with six zeros in it.

>>> z = np.zeros([6])
>>> print z
[0. 0. 0. 0. 0. 0.]
>>> z[3] = 46.4
>>> z[5] = 82.2
>>> print z
[0. 0. 0. 46.4 0. 82.2]

4.2.The arange() function: Arithmetic progression
Use the np.arange() function to build a vector containing an arithmetic progression such as [0.0
0.1 0.2 0.3].

>>> print np.arange(0.0, 0.4, 0.1)
[0. 0.1 0.2 0.3]
>>> print np.arange(5.0, -0.5, -0.5)
[5. 4.5 4. 3.5 3. 2.5 2. 1.5 1. 0.5 0.]

Here is the general form:

np.arange(start, stop=None, step=1, dtype=None)

start
The first value in the sequence.

stop
The limiting value: the last element of the sequence will never be greater than or equal to this value
(assuming that the step value is positive; for negative step values, the last element of the sequence
will always be greater than the stop value).

>>> print np.arange(1.0, 4.0)
[1. 2. 3.]

If you omit the stop value, you will get a sequence starting at zero and using start as the limiting
value.

>>> print np.arange(4)
[0 1 2 3]

step
The common difference between successive values of the array. The default value is one.

5Getting started with NumPyNew Mexico Tech Computer Center

dtype
Use this argument to force representation using a specific type.

>>> print np.arange(10)
[0 1 2 3 4 5 6 7 8 9]
>>> print np.arange(10, dtype=np.float_)
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]

4.3.Two-dimensional arrays
To create a two-dimensional array (matrix), use np.array() as demonstrated above, but use a sequence
of sequences to provide the values.

>>> d2 = np.array([(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)])
>>> print d2
[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]]

To retrieve a value from a matrix M, use an expression of the form M[row, col] where row is the row
position and col is the column position.

>>> print d2[0,2]
2
>>> print d2[2, 3]
11

You can use slicing to get one row or column. A slice operation has this general form:

M[rows, cols]

In this form, rows and cols may be either regular Python slice operations (such as 2:5 to select the
third through fifth items), or they may be just “:” to select all the elements in that dimension.

In this example, we extract a 2×3 submatrix, containing rows 0 and 1, and columns 0, 1, and 2.

>>> print d2[0:2, 0:3]
[[0 1 2]
[4 5 6]]

This example extracts all the rows, but only the first three columns.

>>> print d2[:,0:3]
[[0 1 2]
[4 5 6]
[8 9 10]]

In this example we select all the columns, but only the first two rows.

>>> print d2[0:2,:]
[[0 1 2 3]
[4 5 6 7]]

You can use the np.zeros() function to create an empty matrix. The argument is a sequence (list or
tuple) of the dimensions; we'll use a tuple this time.

New Mexico Tech Computer CenterGetting started with NumPy6

>>> z2 = np.zeros((2,7))
>>> print z2
[[0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0.]]

4.4.Three or more dimensions
The figure below shows the numbering of indices of a 3-d array. The column index is always last. The
row index precedes the column index for arrays of two or more dimensions. For a 3-d array, the “plane”
index is the first index.

[1,0,0] [1,0,2]

[1,1,2][1,1,1][1,1,0]

[1,0,1] [1,0,3]

[1,1,3]

[1,2,3][1,2,2][1,2,1][1,2,0]

[0,0,0] [0,0,2]

[0,1,2][0,1,1][0,1,0]

[0,0,1] [0,0,3]

[0,1,3]

[0,2,3][0,2,2][0,2,1][0,2,0]

column

row

plane

Here is a conversational example of the creation of an array shaped like the above illustration.

>>> import numpy as np
>>> d3 = np.array(
... [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]],
... [[12,13,14,15], [16,17,18,19], [20,21,22,23]]])
>>> print d3
[[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]]

[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]

To extract one element from a three-dimensional array, use an expression of this form:

A[plane, row, col]

For example:

>>> d3[0,0,0]
0
>>> d3[0,0,1]
1
>>> d3[0,1,0]
4

7Getting started with NumPyNew Mexico Tech Computer Center

>>> d3[1,0,0]
12
>>> d3[1,2,3]
23

Slicing generalizes to any number of dimensions. For example:

>>> print d3
[[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]]

[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]

>>> d3[:,:,1:3]
array([[[1, 2],

[5, 6],
[9, 10]],

[[13, 14],
[17, 18],
[21, 22]]])

4.5. Array attributes
These attributes are available from any ndarray.

.ndim
The number of dimensions of this array.

.shape
A tuple of the array's dimensions.

.dtype
The array's type as a dtype instance.

>>> print d1
[2.4 -1.5 3. 8.8]
>>> print d1.ndim, d1.shape, d1.dtype
1 (4,) float64
>>> print d2
[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]]
>>> print d2.ndim, d2.shape, d2.dtype
2 (3, 4) int32
>>> print d3
[[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]]

[[12 13 14 15]
[16 17 18 19]

New Mexico Tech Computer CenterGetting started with NumPy8

[20 21 22 23]]]
>>> print d3.ndim, d3.shape, d3.dtype
3 (2, 3, 4) int32

4.6. Array methods
You may find these methods on ndarray instances to be useful.

A.astype(T)
Creates a new array with the elements from A, but as type T, where T is one of the dtype values
discussed in Section 3, “Basic types” (p. 3).

>>> s1 = np.arange(5, 10)
>>> print s1
[5 6 7 8 9]
>>> s2 = s1.astype(np.float_)
>>> print s2
[5. 6. 7. 8. 9.]

A.copy()
Creates a new ndarray as an exact copy of A.

>>> s3 = s2.copy()
>>> s2[2] = 73.88
>>> print s2
[5. 6. 73.88 8. 9.]
>>> print s3
[5. 6. 7. 8. 9.]

A.reshape(dims)
Returns a new array that is a copy of the values A but having a shape given by dims.

>>> a1 = np.arange(0.0, 12.0, 1.0)
>>> print a1
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.]
>>> a2 = a1.reshape((2,6))
>>> print a2
[[0. 1. 2. 3. 4. 5.]
[6. 7. 8. 9. 10. 11.]]

A.resize(dims)
Changes the shape of array A, but does so in place.

print a1
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.]
>>> a1.resize([2,6])
>>> print a1
[[0. 1. 2. 3. 4. 5.]
[6. 7. 8. 9. 10. 11.]]

A.mean()
Returns the mean of the values in A.

A.var()
Returns the variance of the values in A.

9Getting started with NumPyNew Mexico Tech Computer Center

>>> print a1.mean(), a1.var()
5.5 11.9166666667

There are many other array methods; these are just some of the more common ones.

5. Universal functions (ufuncs)
The usual mathematical operators (+ - * /) generalize to NumPy arrays, as well as a number of ufuncs
(universal functions) defined by NumPy.

For example, to add two vectors v1 and v2 of the same length, the “+” operator gives you an element-
by-element sum.

>>> v1 = np.arange(0.6, 1.6, 0.1)
>>> print v1
[0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5]
>>> v2 = np.arange(40.0, 50.0, 1.0)
>>> print v2
[40. 41. 42. 43. 44. 45. 46. 47. 48. 49.]
>>> print v1+v2
[40.6 41.7 42.8 43.9 45. 46.1 47.2 48.3 49.4 50.5]

The other common operators generalize in the same way.

>>> print v1*v2
[24. 28.7 33.6 38.7 44. 49.5 55.2 61.1 67.2 73.5]
>>> print v1-v2
[-39.4 -40.3 -41.2 -42.1 -43. -43.9 -44.8 -45.7 -46.6 -47.5]
>>> print v1**2
[0.36 0.49 0.64 0.81 1. 1.21 1.44 1.69 1.96 2.25]

You can also use the “+” operator to add a constant value to every element of an array. This is called
broadcasting.

>>> print v1
[0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5]
>>> print v1 + 0.4
[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9]

All the usual Python mathematical operators will broadcast across arrays.

>>> print v1 * 10
[6. 7. 8. 9. 10. 11. 12. 13. 14. 15.]
>>> print v1*10+100
[106. 107. 108. 109. 110. 111. 112. 113. 114. 115.]

In addition, these NumPy functions can be used on arrays, either to operate element-by-element or to
broadcast values.

Absolute value.np.abs(a)

Inverse cosine.np.arccos(a)

Inverse sine.np.arcsin(a)

Inverse tangent.np.arctan(a)

New Mexico Tech Computer CenterGetting started with NumPy10

Computes the arctangent of the slope whose Δy is y and whose Δx is x.np.arctan2(y, x)

Cosine.np.cos(a)

Exponential, ea.np.exp(a)

Natural log.np.log(a)

Common log (base 10).np.log10(a)

Sine.np.sin(a)

Square root.np.sqrt(a)

Tangent.np.tan(a)

Examples:

>>> print np.abs(np.arange(-4, 5))
[4 3 2 1 0 1 2 3 4]
>>> angles = np.arange(0.0, np.pi*9.0/4.0, np.pi/4.0)
>>> print angles/np.pi
[0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2.]
>>> print np.sin(angles)
[0.00000000e+00 7.07106781e-01 1.00000000e+00 7.07106781e-01

1.22460635e-16 -7.07106781e-01 -1.00000000e+00 -7.07106781e-01
-2.44921271e-16]

>>> print np.cos(angles)
[1.00000000e+00 7.07106781e-01 6.12303177e-17 -7.07106781e-01
-1.00000000e+00 -7.07106781e-01 -1.83690953e-16 7.07106781e-01
1.00000000e+00]

>>> print np.tan(angles)
[0.00000000e+00 1.00000000e+00 1.63317787e+16 -1.00000000e+00
-1.22460635e-16 1.00000000e+00 5.44392624e+15 -1.00000000e+00
-2.44921271e-16]

>>> deltaYs = np.array((0, 1, 0, -1))
>>> deltaXs = np.array((1, 0, -1, 0))
>>> quadrants = np.arctan2(deltaYs, deltaXs)
>>> print quadrants
[0. 1.57079633 3.14159265 -1.57079633]
>>> print quadrants/np.pi
[0. 0.5 1. -0.5]

6. Dot and cross products
To find the matrix (dot) product of two arrays a1 and a2, use the function np.dot(a1, a2).

>>> a1 = np.array([[1, 2, -4], [3, -1, 5]])
>>> a2 = np.array([[6, -3], [1, -2], [2, 4]])
>>> print a1
[[1 2 -4]
[3 -1 5]]
>>> print a2
[[6 -3]
[1 -2]
[2 4]]
>>> np.dot(a1, a2)

11Getting started with NumPyNew Mexico Tech Computer Center

array([[0, -23],
[27, 13]])

Similarly, np.cross(x, y) returns the cross-product of vectors x and y.

>>> x = (1, 2, 0)
>>> y = (4, 5, 6)
>>> print np.cross(x, y)
[12 -6 -3]

7. Linear algebra functions
A number of linear algebra functions are available as sub-module linalg of numpy.

np.linalg.det(a)
Returns the determinant of a 2-d array a.

>>> m = np.array(((2,3), (-1, -2)))
>>> print m
[[2 3]
[-1 -2]]
>>> print np.linalg.det(m)
-1.0

np.linalg.inv(a)
Returns the matrix inverse of a non-singular 2-d array a.

>>> good = np.array(((2.1, 3.2), (4.3, 5.4)))
>>> print np.linalg.inv(good)
[[-2.23140496 1.32231405]
[1.7768595 -0.8677686]]

np.linalg.norm(a)
Returns the Frobenius norm of array a.

>>> print good
[[2.1 3.2]
[4.3 5.4]]
>>> print np.linalg.norm(good)
7.89303490427

np.linalg.solve(A, b)
Solves systems of simultaneous linear equations. Given an N×N array of coefficients A, and a length-
N vector of constants b, returns a length-N vector containing the solved values of the variables.

Here's an example system:

2x + y = 19
x - 2y = 2

Here's a conversational example showing the solution (x=8 and y=3):

>>> coeffs = np.array([[2,1], [1,-2]])
>>> print coeffs
[[2 1]

New Mexico Tech Computer CenterGetting started with NumPy12

[1 -2]]
>>> consts = np.array((19, 2))
>>> print consts
[19 2]
>>> print np.linalg.solve(coeffs, consts)
[8. 3.]

13Getting started with NumPyNew Mexico Tech Computer Center

New Mexico Tech Computer CenterGetting started with NumPy14

