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ABSTRACT

Steganalysis aims to detect the information-hiding behavior in steganographic systems.
Bioinformatics is to solve the biological problems usually on the molecular level.
Although steganalysis and bioinformatics are completely different, both of them involve
feature mining and computational intelligence techniques. It is very challenging to solve
the problems in these two fields. In this thesis, chapter 1 is the introduction on
steganography and steganalysis and chapter 5 is the introduction on bioinformatics; the
contributions in image steganalysis are presented in chapters 2, 3, and 4 and the

contributions in bioinformatics are presented in chapters 6 and 7, described as follows.

Information-hiding ratio is a well-known reference to evaluation of the detection
performance in steganalysis. In chapter 2, I introduce another parameter of image
complexity to evaluation of the performance, and present a scheme of steganalysis of
Least Significant Bit (LSB) matching steganography based on feature extraction and
pattern recognition techniques. Comparing to other well-known methods of steganalysis
of LSB matching steganography, our method performs the best. The significance of
features and the detection performance depend not only on the information-hiding ratio

but also on the image complexity.

In chapter 3, I present a scheme based on feature mining and pattern classification to
detect LSB matching steganography in grayscale images, which is a very challenging
problem in steganalysis. Different types of features are proposed. In comparison with

other well-known feature sets, the set of proposed features performs the best. I compare
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different learning classifiers and deal with the issue of feature selection that is rarely
mentioned in steganalysis. In our experiments, the combination of a Dynamic Evolving
Neural Fuzzy Inference System (DENFIS) with a feature selection of Support Vector
Machine Recursive Feature Elimination (SVMRFE) achieves the best detection
performance. Results also show that image complexity is an important reference to

evaluation of steganalysis performance.

Based on the Generalized Gaussian Distribution (GGD) model in the quantized DCT
coefficients, the errors between the logarithmic domain of the histogram of the DCT
coefficients and the polynomial fitting are extracted as features to detect the adulterated
JPEG images and the untouched ones. Computational intelligence techniques are applied
to extracted features. The designed method is successful in detecting the information-
hiding types and the information-hiding length in the multi-class JPEG images including
the CryptoBola, F5, and JPHS steganographic systems. The details are described in

chapter 4.

Chapter 6 aims to improve the classification of microarray gene expression data, which
have a high dimension of variables and small sample size. Gene selection is very
important to the classification. Most existing gene selection methods, including modified
test statistic-based approaches and model-based approaches such as logistic model or
mixed models, give highly correlated significant genes that are redundant for
classification. I develop a new gene selection method, Recursive Feature Addition (RFA),

which combines supervised learning and statistical measures for the chosen candidate



genes to deal with the redundant information. I also propose an algorithm of Lagging

Prediction Peephole Optimization (LPPO) to choose the final feature set.

Comprehensive evaluation of common genetic variations through association of SNP
structure with common complex diseases in the genome-wide scale is currently a hot area
in human genome research. Exploiting information redundancy due to associations
between single nucleotide polymorphism (SNP) markers potentially reduces the efforts in
terms of time and cost for these studies. One of the fundamental questions in SNP-disease
association study is how many SNPs is enough to provide good prediction performance
of disease status. In chapter 7, I develop a new feature selection method named
Supervised Recursive Feature Addition (SRFA). This method combines supervised
learning and statistical measures for the chosen candidate features/SNPs to deal with the
redundancy information so that it can improve the classification in association studies.
Additionally, I propose a Support Vector based lowest weight and lowest correlation
Recursive Feature Addition (SVFRA) scheme in SNP-diseases association analysis.
Results show that on the average, our SRFA outperforms the well-known method of
Support Vector Machine Recursive Feature Elimination and logic regression based SNP

selections for disease classification in genetic association study.
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CHAPTER 1: INTRODUCTION TO STEGANOGRAPHY

AND STEGANALYSIS

Steganography is the art and science of communicating hidden messages in such a way
that no one apart from the intended recipient knows of the existence of the message; this
is in contrast to cryptography, where the existence of the message itself is not disguised,
but the content is obscured. The word "Steganography" is of Greek origin and means
"covered, or hidden writing". Its ancient origins can be traced back to 440 BC. Herodotus
mentions two examples of Steganography in The Histories of Herodotus [Petitcolas et al.
1999]. Demeratus sent a warning about a forthcoming attack to Greece by writing it on a
wooden panel and covering it in wax. Wax tablets were in common use then as re-usable
writing surface, sometimes used for shorthand. Another ancient example is that of
Histiaeus, who shaved the head of his most trusted slave and tattooed a message on it.
After his hair had grown the message was hidden. The purpose was to instigate a revolt
against the Persians. Later, Johannes Trithemius's book Steganographia is a treatise on

cryptography and steganography disguised as a book on black magic.

The advantage of using steganography over using cryptography alone is that the secret
messages will not attract attention. An unhidden coded message, no matter how
unbreakable it is, will arouse suspicion. Generally, we can hide data in digital media
including images, audios, and videos as well as TCP/IP packets, etc. Currently, digital
image is one of the most popular media types for carrying covert message. The innocent

image is called carrier or cover; and the adulterated image carrying some hidden message



is called stego-image or steganogram. Fig. 1-1(a) is an example of steganogram wherein

the text-file about Alzheimer's disease is hidden. Fig. 1-1(b) lists the covert texts.

Alzheimer's: The Mysteries of the Most Common Form of Dementia

In November of nineteen ninety-four, Ronald Reagan wrote a letter to the
American people. The former president shared the news that he had
Alzheimer’s disease. Mister Reagan began what he called his journey into the
sunset of his life. That ten year journey ended on June fifth, two thousand four,
at the age of ninety-three.

In his letter, America's fortieth President wrote about the fears and difficulties
presented by Alzheimer’s disease. He said that he and his wife Nancy hoped
their public announcement would lead to greater understanding of the condition
among individuals and families affected by it.

Ronald Reagan was probably the most famous person to suffer from
Alzheimer's disease. In the United States, about four million five hundred
thousand people have the disease. Many millions more are expected to have it
in years to come.

Doctors describe Alzheimer's as a slowly increasing brain disorder. It affects
memory and personality -- those qualities that make a person an individual.
There is no known cure. Victims slowly lose their abilities to deal with
everyday life. At first they forget simple things, like where they put something
or a person’s name.

As time passes, they forget more and more. They forget the names of their
husband, wife or children. Then they forget who they are. Finally, they
remember nothing. It is as if their brain dies before the other parts of the body.
Victims of Alzheimer’s do die from the disease, but it may take many years.

(a) (b)

Fig. 1-1 An example of steganogram. The covert message shown in (b) is embedded in
the left image (a).

Though not proven, there have been claims that terrorists have been using steganography
to communicate with each other in planning attacks. It has been thought that images with
embedded messages have been placed on bulletin boards or dead drops for other terrorists
to pick up and then retrieve any hidden messages. Since it is so difficult to detect when
steganography is taking place, this is a very secure form of communication and it has
thought to be used by Al-Qaida [Kelley 2001, http://www.usatoday.com/tech/news/2001-02-05-

binladen.htm].

The common information-hiding techniques implement hiding data in digital images by

modifying the pixel values of the space domain or modifying the transform coefficients.



In hiding data in the space domain, one simple method is Least Significant Bit (LSB)
steganography or LSB embedding [Kurak and McHugh, 1992]. Each byte of an image
represents a different color. The last few bits in a color byte, however, do not hold as
much significance as the first few. Therefore, two bytes that only differ in the last few
bits can represent two colors that are virtually indistinguishable to the human eye. For
example, 00100100 and 00100101 can be two different shades of red, but since it is only
the last bit that is different, it is impossible to see the color difference. LSB embedding,
then, alters these last bits by hiding a message within them. LSB embedding has the merit
of simplicity, but suffers from the lack of robustness. LSB matching, another method of
hiding data in space domain randomly alters the bytes by plus or minus one according to

the bit of cipher message, not simply replacing the last bits [Sharp, 2001].

In hiding data in the transform domain, a message is embedded by the way of modifying
transform coefficients of the cover. There are three common transform techniques:
Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and Discrete
Fourier Transform (DFT). For example, hiding data in the low frequency part of 2-D
lossless wavelet transform and utilizing convolution error correction coding, Xu et al.
designed different information-hiding systems by embedding data in the wavelet domain
to achieve a big hiding capacity and extremely robustness against JPEG compression
[Xu et al., 2003, 2004]. Derek Upham publicized JPEG-JSteg to hide data in JPEG
images [Derek Upham, http://www.nic.funet.fi/pub/crypt/steganography]. Its embedding algorithm

sequentially replaces the least-significant bit of DCT coefficients with the message’s data



[Provos and Honeyman, 2003]. And it is easy to be detected [Zhang and Ping, 2003].
Instead of replacing the least-significant bit of DCT coefficient with message data, F5
decrements its absolute value in a process called matrix encoding [Westfeld, 2001].
Additionally an efficient FFT based signal scheme for multimedia steganography was
proposed to permit the use of signal sets of large dimensions without increasing the

computational complexity drastically [Ramkumar et al., 1999].

(@) (b)

Fig. 1-2 An original cover (a) and the stego-image (b)

Other information hiding techniques include spread spectrum steganography [Marvel et
al., 1999], statistical steganography, distortion, and cover generation steganography
[Katzenbeisser and Petitcolas, 2000], etc. Many hiding tools can be downloaded from
Internet based on different hiding methods such as Invisible Secrets
[http://www.invisiblesecrets.com], Secure Engine [http:/securengine.isecurelabs.com/, retrieved on

Apr 27, 2007], Hide4PGP [http://www.heinz-repp.onlinehome.de/Hide4PGP.htm], and CryptoBola



[http://www.cryptobola.com]. Fig. 1-2 shows a JPEG image (a) and the steganogram (b)
wherein 628-byte data is hidden. It is very challenging to judge which one is carrying the
hidden data in the existence of both the cover and the stego-image, let alone in the single

appearance of the cover or the stego-image.

Steganalysis aims to discover the presence of hidden data. Westfeld performed the blind
steganalysis on the basis of statistical analysis of PoVs (pair of values). This method, so-
called y -statistical analysis [Westfeld and Pfitzmann, 2000], gave a successful result to a
sequential LSB (Least Significant Bit) embedding steganography. Provos extended this
method by re-sampling the test interval and re-pairing values [Provos, 2001]. Fridrich et
al. introduced a RS steganalysis which is based on the partition of an image’s pixels into
three groups: Regular, Singular and Unusable and estimate the possible embedded
message length of the LSB steganography [Fridrich, Goljan and Du, 2001]. Lyu and
Farid [Lyu and Farid, 2004, 2005] described an approach to detect hidden messages in
images that uses a wavelet-like decomposition to build higher-order statistical models of
natural images. Support vector machines are then used to discriminate between
untouched and adulterated images. Avcibas et al. presented a universal detection
technique for steganalysis of image based on image quality metrics [Avcibas et al., 2003].
Based on the 3-D DFT and the calculation of the center of mass, Harmsen and Pearlman
proposed a detector of the Histogram Characteristic Function Center Of Mass (HCFCOM)
that is very successful in detecting multiple information-hiding systems [Harmsen and

Pearlman, 2003]. Based on HCFCOM, Ker designed Adjacency HCFCOM (A.



HCFCOM) and Calibrated Adjacent HCFCOM (C. A. HCFCOM) to improve the

probability of detection for LSB matching in grayscale images [Ker, 2005].

To this date, most publications refer information hiding ratio to evaluate the performance
of steganalysis. Specifically, the higher the hiding ratio, the higher the detection
performance will be. However, to our knowledge, few publications mentioned the
parameter of image complexity that is also very important to evaluate the detection
performance. On the other side, most of steganalysis methods depend on feature design
and pattern classification techniques. But the feature selection was rarely mentioned in
the past literatures in steganalysis. These two issues will be addressed as well as new

detection methods designed in the following chapters.

The remainder of steganalysis is organized as follows. Chapter 2 describes the
steganalysis of LSB matching steganography which is one of the most difficult space-
hiding steganography for detection, and introduces the shape parameter of Generalized
Gaussian Distribution (GGD) in the wavelet domain to measure the image complexity
and evaluate the steganalysis performance. Chapter 3 presents new features to improve
the detection performance in stgeganalysis of LSB matching steganography in grayscale
images and deals with the feature selection in the steganlysis. Chapter 4 is the detection
of the information-hiding behavior in transform-hiding steganography, focusing on JPEG

images.



CHAPTER 2: STEGANALYSIS OF SPACE-HIDING

STEGANOGRAPHIC SYSTEMS

2.1 Introduction

Space-hiding steganographic system implements embedding data in the space domain.
Specifically, for image, it modifies the pixel values to achieve the goal of hiding data. A
popular information-hiding technique in space-hiding steganographic systems in images
is Least Significant Bit (LSB) Embedding/Replacement, which combines high capacity
with visual imperceptibility and very ease of implementation. However this information-
hiding system has the weakness to the sensitive statistical detections such as y*-test and
RS-steganalysis. A minor modification of the LSB Embedding/Replacement method,
which we call LSB Matching, retains the favorable characteristics of LSB Replacement

but is more difficult to detect statistically.

2.2 LSB Matching and Related Work on the Detection

LSB Matching was first described by Sharp [Sharp, 2001]. ]. In each case the secret data
is taken as a stream of bits, and the cover image is considered as a stream of bytes. These
bytes are taken in a pseudorandom order, as specified by a secret key which is presumed
to be shared between sender and recipient of the stego image. This serves both to prevent
the enemy steganalyst from reading the secret data straight off and also to spread the
secret data over the cover when there is less than the maximal amount. Yu ef al. designed

the LSB matching steganography evading the statistical analyses of y’-test and RS-



steganalysis [Yu ef al., 2004]. The idea is to preserve the occurrence of PoVs by applying
the random flipping to embedding a message and to adjust the RS statistical measures
with unused embedding parts after embedding a secret message. Since LSB matching is
hard for detection and easy for implementation, it’s important and challenging to design a

reliable method for detecting the information-hiding.

There are a few detectors that may be used in detecting the information-hiding in LSB
matching steganography. One of them is the histogram characteristic function center of
mass (HCFCOM) [Harmsen and Pearlman, 2003] since the embedding of LSB matching
can be modeled on noise adding. To improve the probability of detection for LSB
matching in grayscale images, based on the Harmsen and Pearlman’s contribution, Ker
proposed Adjacency HCFCOM (A. HCFCOM) and Calibrated Adjacency HCFCOM (C.
A. HCFCOM) [Ker, 2005]. Farid and Lyu achieved an approach to detecting hidden
messages in images by using a wavelet-like decomposition to build high-order statistical
models of natural images [Lyu and Farid, 2004, 2005]. Fridrich et al. presented a
Maximum Likelihood (ML) estimator for predicting the hiding ratio of non-adaptive =K
embedding in images [Fridrich et al., 2005]. Unfortunately, the ML estimator starts to
“fail to reliably estimate the message length once the variance of the sample exceeds 9”
[Fridrich et al., 2005]. Recently, correlation features in spatial domain and wavelet
domain are extracted for image steganalysis [Liu, Sung and Ribeiro, 2005], although the
method is effective for detection of several steganography systems, the images in the
experiments are downloaded from Internet and the almost all of them are compressed. It

is not done on the experiments on never compressed images. Generally, regarding the



information-hiding in space domain, it is much more difficult to detect the information-

hiding in never compressed images than that in compressed images.

To our knowledge, most publications evaluate the steganalysis performance in reference
to information hiding ratio and miss another important parameter of image complexity
that is also very important in evaluating the detection performance. In this chapter, the
shape parameter of the Generalized Gaussian Distribution (GGD) in the wavelet domain
is introduced to measure the image complexity, as a reference as well as the information-
hiding ratio to the evaluation of the steganalysis performance. Different types of features

are designed for detection of the information-hiding in LSB matching steganography.

2.3 Image Complexity and GGD model

Several articles [Huang and Mumford, 1999; Sharifi and Leon-Garcia, 1995;
Wainwright and Simoncelli, 2000; Wouwer et al., 1999; Winkler, 1995] describe the
statistical models of images such as Markov Random Field models (MRFs), Gaussian
Mixture Model (GMM), and Generalized Gaussian Distribution (GGD) model in

transform domains, such as, DCT, DWT, and Discrete Fourier Transform (DFT).

Experiments show that a good Probability Distribution Function (PDF) approximation for
the marginal density of coefficients at a particular sub-band produced by various types of
wavelet transforms may be achieved by adaptively varying two parameters of the GGD

[Sharifi and Leon-Garcia, 1995; Moulin and Liu, 1999], which is defined as



4 o’

PP = B (2-1)

where F(z):jwe_ttz_ldt,z>0 is the Gamma function, the scale parameter & models the
0

width of the PDF peak (standard deviation), and the shape parameter f is inversely
proportional to the decreasing rate of the peak. The GGD model contains the Gaussian

and Laplacian PDFs as special cases, using f =2 and f = 1, respectively.

Generally, an image with high complexity has a high shape parameter to the GGD in the
wavelet domain. Fig. 2-1 shows the 256x256 grayscale images with different textures on
the left and the histogram distributions of the Haar wavelet HH sub-band coefficients and

the GGD simulations on the right.

The fact that the high peak distribution of the wavelet coefficients is obtained at the value
of zero indicates that adjacent pixels are highly correlated. More clearly, Fig. 2-2(a)
shows an 8-bit grayscale image. The variable v(i, j) denotes the grayscale value at point (i,
j) and v(i+1, j) denotes the grayscale value at the point (i+1, j). The occurrences of the
pair (v(i, j), v(i+1, j)) calculate the joint distribution of the adjacent points, shown in Fig.

4(b) which demonstrates the high correlation of adjacent pixels.
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4000 b | real distribution )
|  ———GGD simulstion
|
3000 b II |
i
|
2000 . |
1000 b |

|:| L - L
150 100 -30 a a0 100 130 200

Simulation for HH histogram, GGD shape parameter; 06102
oo T T .

resl distribtion
500 [ — — — 30D simulation |

500 1
400 f 1

300 1

200 f 1

100 f 1

0 . -
=200 -100 0 100 200

11



Simulation for HH histogram, GGD shape parameter: 0 9695
300 T T T
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Fig. 2-1 Demonstration of image complexity and the GGD. The 256x256 grayscale
images with different complexity (left) and the generalized Gaussian distribution of the
HH sub-band coefficients (right), decomposed by Haar wavelet. Fig. 2-1 indicates that
the image with low complexity has low shape parameter of the GGD and the image with
high complexity has high shape parameter of the GGD.
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Fig. 2-2 An 8-bit grayscale image (a) and the joint distribution (b) of the adjacent pixel
pair (v(i, j), v(it1, j)). The horizontal axis in (b) shows the value of the pixel (i, j) and the
vertical axis marks the value of the pixel (i +1, j). The joint distribution indicates the
probability of the pair (v(i, j), v(it+1, j)).

2.4 Feature Extraction

Based on the GGD model and the observation of the high correlation of the adjacent
pixels, mentioned in 2.3, here is the hypothesis that the information-hiding in space-
hiding systems will affect the high correlation of the adjacent pixels. Based on this

hypothesis, the following features are designed.

We consider the correlation between LSBP and the second Least Significant Bit Plane
(LSBP2). M, = {7 }(i=1,2,...,m;j=1,2, ..., n; iand; give the location of the element
in the matrix) is the m>n matrix of the binary bits of the LSBP and M, = {#! }(i=1, 2, ...,

m;j=1,2, ..., n)is the mxn matrix of binary bits of the LSBP2. Here m and n are the

13



numbers of pixels in horizontal and vertical directions, and E(¢) is the mathematical

expectation. The covariance function is defined as

Cov(x,x,) = E[(x; —uy )(xy —u;)]

where u; = E(x;).
C1 is defined as follows:

Cov(M |,M ,)

O-MIO-MZ

Cl =cor(M,, M,)=

where 0';1 =Var(M ) and 0';2 =Var(M ,).
The autocorrelation C(k, 1) of LSBP is defined as follows:
C(k,l) = cor (Xll(m—k)(n—l)’ X(k+1)(l+1)mn)

where, X |\, on =07 3 ((=12,..om—k; j=1,2,..,n=1)

and X oo = b7HE =k ALk +2,0m; j =1 +1,142,...m).

Set different values to k and /, the features from C2 to C15 are presented as follows:

C2=C(1,0); C3=C(2,0); C4=C(3,0);

C6=C(0,1); C7=C(0,2); C8=C(0,3);

C10=C(1, 1); Cl11=C(2,2); C12=C(3,3); C13=C@,4);

Cl4=C(1,2); C15=C(2,1).

C5 = C(4, 0);

C9 = C(0, 4);

(2-2)

(2-3)

(2-4)

The variable p,denotes the histogram probability density of cover at the intensity, k (k =

0,1, ...,N-1, for 8-bit grayscale image, N = 256). The variable, p’, denotes the histogram

probability density of adulterated images at the intensity k. The LSBP hiding rate r is the
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relative length of hidden binary data, assume the hidden data is i.i.d., for 8-bit grayscale
image, p'i is given as follows:
Pk = (1-1/2)* pp + (t/4)* pr1t(1/4)* prv1, 2<k <253
Po=(1-1/2)* py + (t/4)* p
p'r=(1-1/2)* pi + (t/4)* prH(r/2)* po (2-5)
Pss = (1-1/2)* pass + (1/4)* pasa
P54 = (1-1/2)* pasa + (t/4)* pas3t(1/2)* poss

Without original cover, just based on the distribution density of the histogram, it is too
difficult to accurately judge that the test image is hiding some data or not and predict the
hiding ratio ». However, LSB matching steganography definitely modifies the distribution
density of the histogram. Based on this point, we present the correlation features on the
histogram. The histogram probability density, H, is denoted as (oo, o1, P2, ..., pn-1)- The
histogram probability densities, H ., H o, H 1, and H ;, are given:

H.=(po, p2, pa...pn2) »  Ho=(p1, p3, ps...px:1);
Hi = (po, p1, po...o81),  H p= (01, Pre1; Prea- .. PN1)-

The autocorrelation coefficients C16 and Cy(/) are defined:
C16 = cor (H,, Hy) (2-6)
Cu(!) = cor (Hy;, Hyp) (2-7)
Set /=1, 2, 3 and 4, the features C17 to C20 are:
Cl17=Cu(l), C18=Cu(2), C19=Cu(3), C20=Cu(4).
Besides the features mentioned above, we consider the difference between the testing
image and the denoised. CI denotes the cover image and SI denotes the stego-image.

Embedding information into images may be modeled as the process of adding noise. D ()
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is some denoising function. We define the difference between pre-denoised and post-

denoised as follows:
E ., =CI-D(CI) (2-8)
E, =SI-D(SI) (2-9)
Generally, the statistics of E¢; and Eg; are different. We apply wavelet hard-threshold
denoising without shrinkage [Mallat, 1999] to the image. Firstly, apply wavelet transform
to test image, set zero to the wavelet coefficients in HL, LH and HH sub-bands of which
the absolute value are smaller than some threshold value ¢, and reconstruct the image by
applying the inverse wavelet transform to the modified wavelet coefficients. The
difference between the original and the reconstructed E; is the mxn
matrix, £, = {¢/}(i=1,2,...,m; j =1,2,...,n) . The correlation features in the difference domain
are given as follows
Cy(t; k1) = cor (E 1y mrixntys E i ranistym) (2-10)
where,
E,imtonny =€/ (=12, om—k; j=1,2,..,n=1);
E, sty = 1€ i =k+Lk+2,om; j=1+11+2,...n) .
Set different values to ¢, k and /, features C21 to C41 are presented as follows:
C21=C ;(1.5; 0,1); C22=C ,(1.5; 1,0); C23=C .(1.5; L1); C24=C .(1.5; 0,2);
C25=C ,(1.5; 2,0); C26=C (1.5; 1,2); C27=C (1.5; 2,1); C28=C .(2; 0,1);
C29=C ,(2; 1,0); C30=C .(2; 1,1); C31=C .(2; 0,2); C32=C ,(2; 2,0);

C33=C ,(2; 1,2); C34=C ,(2; 2,1); C35=C ,(2.5; 0,1); C36=C ,(2.5; 1,0);
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C37=C ,(2.5; 1,1); C38=C ,(2.5; 0,2); C39=C ,(2.5; 2,0); C40=C ,(2.5; 1,2);
C41=C ,(2.5; 2,1).

In RGB color images, the matrices M, My, and My, stand for the least significant bit
planes of red, blue and green channels, respectively, the correlation coefficients Crg, Cr,

and Cy, are given as follows, where abs(-) denotes the absolute value function.

Cig = abs(cor(M1, Mg1)) (2-11)
Cr, = abs(cor(M;1, My)) (2-12)
Cyb = abs(cor(Myg1, My)) (2-13)

Similar to (2-10), £, (c=r, g b) is the difference across the color channels (red, green,

and blue) of the original and the reconstructed. The correlation features are defined as

follows.
CE,.g (t)=cor(E,,.E t,g) (2-14)
Cp ()=cor(E,, E,,) (2-15)
Cp, (t)=cor(E,,E,,) (2-16)

After extracting the features defined above, we apply analysis of variance (ANOVA)
[Avcibas et al, 2003; Rencher, 2002] to the features and pick up the features with high

statistical significances as the final detectors.

2.5 One-way ANOVA

The purpose of one-way ANOVA [Rencher, 2002] is to determine whether the groups are

actually different in the measured characteristic. The model of one-way ANOVA is:

17



y =Y +e, (i=12,.,1;j=12,.,J) (2-17)

2, (2-18)

Y=—> > (2-19)

Where y;j is a matrix of observations in which each column represents a different group
and g;; 1s a matrix of random disturbances. I is the sample number for every group and J
is the number of groups. The variations, SS(Between) and SS(Within), are measured by:

SS(Between) = Z Y -Yy (2-20)

j=1

SS(Within) = Y Z (v, -Y) (2-21)

=1 j=1

Dividing the corresponding sum of squares by its degrees of freedom, the mean sum of

squares is given by:

SS(Between)
MS (Between) = —————— (2-22)
J -1
SS (Within)
MS (Within) = ———— (2-23)
J-J

The F-statistic for ANOVA is a ratio of MS(Between) to MS(Within). The p-value is
given by comparing the F-statistic with the F(J-1, 1J-J)-distribution, which tells the
probability H.

MS (Between)
MS (Within)

F= (2-24)
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p=P(F>F) (2-25)

H T=Y=.-T (2-26)

2.6 Experimental Setup

Generally, embedding data in once compressed images by modifying the pixel values is
easier to detect than hiding data in uncompressed images. The original covers in our
experiments are 5000 TIFF raw format digital pictures during 2003 to 2005. These

images are 24-bit, 640x480 pixels, lossless true color and never compressed.

In steganalysis of color images, according to the pre-processing method in [Lyu and Farid,
2004, 2005], we cropped the original images into 256x256 pixels in order to get rid of the
low complexity parts of the images. The cropped images are covers in our experiments.
We categorize the covers according to the parameter of image complexity. The image

complexity for color images is calculated as follows:
B=B,+p,+p,)/3 (2-27)
The variable S.(c=r,g,b) is the shape parameter of the GGD of the HH sub-band

coefficients, corresponding to red, green, and blue channel. Fig. 2-3 lists some cover

samples with different image complexity in color images.
In steganalysis of grayscale images, the cropped color images are converted into

grayscales that are used as covers. The image complexity for grayscale is measured by

the shape parameter of the GGD of the HH sub-band coefficients.
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Fig. 2-3 Cover samples with different image complexity that is measured by the GGD
shape parameter in the wavelet domain.
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Stego-images are produced with the use of LSB matching algorithm. The hidden
messages cover different types such as digital image, audio, text file, pdf file, zipped file,
executable code, source code, random signal, etc. The hidden data in any two covers are

different.

In steganalysis of color images, the correlation feature set consists of the following
features: Cl, C2, Co, C10, Cl4, C15, C1e, C17,
C,(2501),C,.(25 1,00, C.(25 L1),C.3;0,1), C.(3; 1,00, and C .(3; 11)
defined in Section 3, corresponding to red, green, and blue channels, 14x3 = 42 features;

Cp (1), Cp (), CEgb (t) (t=1, 1.5, and 2), 3x3 =9 features; in addition to C, Cy, and

Cy, total 54 features. We compare the proposed feature set against other well-known
feature sets of the Histogram Characteristic Function Center of Mass (HCFCOM)
[Harmsen and Pearlman, 2003] and High-Order Moment statistics in Multi-Scale
decomposition domain (HOMMS) [Lyu and Farid, 2004, 2005]. There are 3 features of

HCFCOM and 216 features of HOMMS in color images.

The experiments on steganalysis of LSB matching steganography in grayscale images are
the same to color images except that correlation feature set consists of the 41 features, C1
to C41, defined in section 3 and HOMMS feature set consists of 72 features in grayscale
images. We extend HCFCOM feature set to the high order moments. Here HCFHOM
stands for HCF center of mass High Order Moments; HCFHOM (r) denotes the ™ order

moment. In our experiments, the HCFHOM feature set consists of HCFCOM and
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HCFHOM(r) (r = 2, 3, and 4). Additionally, Ker proposed two novel ways of applying
the HCF: calibrating the output using a down-sampled image and computing the
adjacency histogram instead of the usual histogram [Ker, 2005]. The best discriminators
are Adjacency HCFCOM (A.HCFCOM) and Calibrated Adjacency HCFCOM

(C.A.HCFCOM).

Generally, different classifiers have different classification performances on different
feature sets. Considering this point, we utilize the following classifiers:
1. Fisher Linear Discriminate (FLD),
2. Optimization of the Parzen Classifier (ParzenC),
3. Naive Bayes classifier (NBC),
4. Support Vector Machines (SVM),
5. Linear Bayes Normal Classifier (LDC),
6. Quadratic Bayes Normal Classifier (QDC),
7. Bayes Classifier (BC) that is based on maximal likelihood estimation of Gaussian
mixture model,
8. Adaboost algorithm (Adaboost) which produces a classifier composed from a set
of weak rules.
The details of these classifiers are described in the references [Duda, Hart and Stork,
2001; Friedman, Hastie and Tibshirani, 2000; Heijden et al., 2004; Schlesinger and
Hlavac, 2002; Taylor and Cristianini, 2004; Vapnik, 1998; Webb, 2002]. We apply each
classifier to each feature set in each category of image complexity sixteen times. In each

time, the training samples are randomly chosen and the remaining samples are tested.
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2.7 Comparison of Statistical Significances

A parametric test is a test that requires a parametric assumption such as normality.
Nonparametric test does not rely on parametric assumption like normality. Parametric
tests work well with large samples even if the population is non-Gaussian [Motulsky,
1995]. Fig. 2-4 lists the F statistics and p-values of correlation features (CF), HOMMS,
and HCFCOM features, extracted from 5000 covers and 5000 LSB matching stego-
images in color images. The LSBP hiding ratio of these stego-images is 1 or the
maximum hiding ratio. Fig. 2-4 indicates that, regarding individual features, HCFCOM
features with the highest F statistics and lowest p-values are better than correlation
features; correlation features with higher F statistics and lower p-vales are better than
HOMMS features. In HOMMS, there are many features with high p-values, indicating
that these features are weak for discriminating cover images and stego-images. Regarding
the F statistics of the correlation features, generally, the correlation features on inter-
channels (feature-dimension 43 to 54) have higher F-statistics than the correlation
features on intra-channels (feature-dimension 1 to 42), which exhibits that the correlation

features on inter-channel are better than the intra-channel features.

Fig. 2-5 lists the F statistics and p-values of CF, HOMMS, HCFHOM, A. HCFCOM and
C.A.-HCFCOM features, extracted from 5000 covers and 5000 LSB matching stego-
images in grayscale images of which the LSBP hiding ratio is 1 or the maximum hiding
ratio. Regarding individual features, Fig. 2-5 indicates that correlation features with the

highest F statistics and lowest p-values are better than other features; HOMMS features
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are not so good because the p-values of many HOMMS features are pretty high,

indicating that the statistical significances of these HOMMS features are low and the

classification performance is the worst.
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Fig. 2-4 F statistics and p-values of correlations, HOMMS, and HCFCOM features in

color images.
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Fig. 2-5 F statistics and p-values of correlations, HOMMS, HCFHOM, A. HCFCOM and
C.A.HCFCOM features in grayscale images.

2.8 Comparison of Classification Performances

Fig. 2-6 gives the top two classification accuracy (mean values and standard errors) on
each feature set in color images under the LSBP hiding ratios of 1, 0.75, 0.5, and 0.25
(Fig. 8a-d)). Results show that, on the average, the set of correlation features (CF)
outperforms HCFCOM and HOMMS; as the image complexity increases, the detection

performances decrease; as the information-hiding ratio decreases, the diction
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performances decreases. Especially the detection performance of HOMMS decreases
obviously and the classification performance is not good while the parameter of image

complexity S is bigger than one.

Fig. 2-7 lists the best classifications in grayscale images under the different hiding ratios
and different image complexities. Results show that the detection performance of CF is
the best and the performance of HOMMS is the worst, which is consistent with the
analysis of the statistical significance. On the average, the classification performances
decrease as the image complexity increases. When the parameter of image complexity is
bigger than 0.8 or the LSBP hiding ratio is 0.25, the performances are not good. It
obviously demonstrates that the steganalysis of LSB matching steganography in
grayscale images is still very challenging in the cases where the grayscale image consists

of complicated texture or the hiding ratio is very low.

In signal detection theory, a receiver operating characteristic (ROC) is a graphical plot of
the sensitivity (fraction of true positives - TP) vs. 1-specificity (the fraction of false
positives - FP) for a binary classifier system as its discrimination threshold is varied. The
ROC curves under different image complexities in color images with the LSBP hiding
ratios of 0.75 (I) and 0.5 (II) are shown in Fig. 2-8. Obviously, CF outperforms
HCFCOM and HOMMS. The detection performances closely depend not only on the
measure of information hiding ratio but also on the parameter of image complexity. As
information hiding ratio decreases and image complexity increases, the detection

performances decrease.
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The legend for (a) and (b)
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Fig. 2-6 The best two classifications (mean values and standard errors) on each feature
set (steganalysis of color LSB matching steganography). LSBP hiding ratios are 1(a),
0.75(b), 0.5(c), and 0.25(d), respectively. In the legends for (a), (b), (c), and (d), SVM-
CF denotes applying SVM to Correlation Features (CF), Adaboost-HCFCOM denotes
applying Adaboost to HCFCOM features, and so on.
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Fig. 2-7 The best classification (mean values and standard deviations) on each feature set
(steganalysis of grayscale LSB matching steganography). The LSBP hiding ratios are
1(a), 0.75(b), 0.5(c), and 0.25(d), respectively.

2.9 Discussions

All experiments show that the classification performances in color images are better than
grayscale images. Fig. 2-4 reveals the statistical significances of the inter-channel
correlation features are higher than intra-channel correlation features. In our point of
view, on the average, there is stronger correlation in inter-channel than intra-channel
which causes this result. Fig. 2-9(a) shows a color image and Fig. 2-9(b) presents the
converted grayscale. Fig. 2-9(c), (e) and (g) are the joint probability of the red-green, red-

blue and green-blue channels of the color image. Fig. 2-9(d), (f) and (h) are the joint
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probability of the adjacent pixels in the horizontal, vertical and diagonal directions of the
grayscale image. The joint distribution of the grayscale is sparser, and the joint
distribution of the color is more concentrated. The maximum values of the joint
probability of the color are 0.012, 0.0030, and 0.0091, respectively, bigger than the

maximum values of the grayscale.

As the image complexity increases, the variation of the adjacent pixels increases, and the
correlation decreases. Fig. 2-10 shows two grayscale images with low parameter of image
complexity (Fig. 2-10(a)) and high parameter (Fig. 2-10(b)). Fig. 2-10(c), (e), and (g)
give the joint distribution of the adjacent pixels of Fig. 2-10(a); Fig. 2-10(d), (f), and (h)
give the joint distribution of the adjacent pixels of Fig.2-10(b). The correlation
information of the adjacent pixels of Fig.2-10(a) is stronger than Fig.2-10(b). It indicates
that, with an increase of the parameter of image complexity, an increase of the variation
of adjacent pixels results in decreasing both the detection performance and statistical

significance.

Table 2-1 The ranksum test of the image complexity of the covers and the stego-images.

Shape parameter 3 <0.4 04~06 | 06~08 | 08~1.0 | 1.0~12 | >12
Sample cover 766 1576 982 770 515 391
number stego 636 1596 989 774 494 511

Wilcoxonrank |  p-value 0.0561 0.3319 0.5685 0.5273 | 0.8095 | 4.01e-008
sum est HP 0 0 0 0 0 1
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Fig. 2-8 ROC curves in the steganalysis of LSB matching steganography in color images
at the LSBP hiding ratios of 0.75 (I) and 0.5 (II). X-label gives the False Positive (FP)
and y-label gives the False Negative (FN). The shape parameter § at the bottom of each
figure indicates the range of the image complexity under the experiment.
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Fig. 2-9 Comparison of correlation in color and grayscale images. Left column is a color
sample and the correlations of the inter-channels; right column is the grayscale sample
converted from (a) and the correlation of the adjacent pixels. It indicates that the
correlation information on inter-channel is higher than that on intra-channel by
comparing the joint probabilities in left column and the joint probabilities in right
column.
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Fig. 2-10 Comparison of correlations of low complexity and high complexity grayscales.
Left column is a grayscale sample with low complexity and the correlations of the
adjacent pixels; right column is the grayscale sample with high complexity and the
correlation of the adjacent pixels. It indicates that the correlation information of the
image with low complexity is higher than that of the image with high complexity.
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Figures 2-6 and 2-7 show when shape parameter is bigger than 1.2, the classification
suddenly improves (not so much). This seems to contradict with the conclusion that with
increasing complexity detection ability decreases. Actually, this contradiction is caused
by the different distribution of the image complexity of the covers and the stego-images
in the case where the shape parameter is bigger than 1.2; it doesn’t contract with the
conclusion. To further explain this contradiction, we study the affection on the image
complexity caused by information-hiding. A non-parametric test, Wilcoxon rank sum test
is performed for equal medians at the 0.05 significance level. The hypothesis is that two
independent samples X and Y (X and Y can be different lengths) come from distributions
with equal medians, and returns the p-value, the probability of observing the given result,
or one more extreme, by chance if the null hypothesis ("medians are equal") is true. Table
2-1 lists the sample-numbers of covers and steganograms in the grayscale image, the
LSBP hiding ratio is 1. HP=0 indicates that the null hypothesis ("medians are equal")
cannot be rejected at the 5% level. HP=1 indicates that the null hypothesis can be rejected
at the 5% level. Generally, the LSB matching information-hiding will increase the image
complexity, but not so much. In table 2-1, there are 766 cover samples and 636 stego-
samples in the category of B < 0.4. It means that with information-hiding the image
complexity increases, there are 130 stego- samples and the image complexity is bigger
than 0.4, although the original image complexity is smaller than 0.4. Similarly, 120
images shift to the category of § > 1.2 from the category of < 1.2 with the information-
hiding. Wilcoxon rank sum test indicates that the shifting of the image complexity with
the information-hiding don’t change the distribution in the categories of f < 1.2, but the

distribution is changed in the category of B > 1.2. Fig. 2-11 shows the distribution
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difference of the covers (on the left) and the stego-images (on the right) in the categories
of B > 1.2 (on the upper) and 1 < 3 < 1.2 (on the lower) in the grayscale imaged, the
LSBP hiding ratio is 1. Table 2-1 and Fig. 2-11 show that, it is the distribution difference
that results in the contraction in Figures 2-6 and 2-7. Again, it indicates that the detection
performance depends on the image complexity. Fig. 2-12 is the boxplot of the image
complexity of the covers and the stego-images (grayscale), the LSBP hiding ratio is 1. It
shows that the information-hiding will increase the image complexity, but the increase is
small. In our experiments, when the shape parameter is smaller than 1.2, the information-
hiding didn’t change the distribution of the image complexity, but it did change the
distribution of the image complexity in the case where the shape parameter is bigger than

1.2, which results in the contradiction in the results shown in figures 2-6 and 2-7.

cowver [ * 1.2] stego [ * 1.2)
A0 : A
= E S
0 0
1 148 2 24 1T 145 2 24
beta beta
cowver (1.0~ 1.2 stego (1.0 ~ 1.2]
a1
a0 |
= E S
0 0
1 1.2 1 1.2
beta beta

Fig. 2-11 The distribution of the image complexity of the covers and the stego-images
(grayscale) in the categories of f > 1.2 and B in [1, 1.2].The LSBP hiding ratio is 1.
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Fig. 2-12 The boxplot of the image complexity of the covers and the stego-images
(grayscale). The LSBP hiding ratio is 1.

2.10 Conclusions

Information-hiding ratio is a well-known reference to evaluation of the performance of
steganalysis. However, few publications clearly demonstrate the relation of image
complexity and detection performance. In this chapter, we introduce the parameter of
image complexity to the field of steganalysis and utilize the shape parameter of
Generalized Gaussian Distribution (GGD) in the wavelet domain to measure the image
complexity. To detect the presence of hidden data in LSB matching steganography, we
present different correlation features. Comparing to other well-known features of
HCFCOM and HOMMS in color images, and HCFHOM, HOMMS, A.HCFCOM, and
C.A.HCFCOM in grayscale images, overall, our feature set performs the best.

Experimental results show that the statistical significance of features and the detection
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performance closely depend not only on the information-hiding ratio but also on the
image complexity. While the hiding ratio decreases and the image complexity increases,
the significance and detection performance decrease. Meanwhile, the steganalysis of LSB
matching steganography in grayscale images is still very challenging in the cases of

complicated textures or low hiding ratios.

There is high correlation of adjacent pixels. Based on the features presented in this
chapter, we also successfully applied the method to detecting the information-hiding
behaviors in other space-hiding steganogrphic systems [Liu, Sung and Ribeiro, 2005; Liu,
Sung and Xu, 2005] and the experimental results also support the hypothesis that the

information-hiding in space-hiding steganographic systems affect the high correlation.

Feature selection is a general problem. This chapter did not cope with the issue of

optimizing the feature set, which will be studied in the next chapter as well as the

improvement of the detection of LSB matching steganography in grayscale images.
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CHAPTER 3: IMPROVED DETECTION OF LSB

MATCHING IN GRAYSCALE IMAGES

3.1 Introduction

Many detection methods in steganalysis are based on feature mining and pattern
classification techniques. Regarding feature mining, besides feature extraction, another
general problem is feature selection. Analysis of variance (ANOVA) is utilized to choose
good image quality metrics [Avcibas ef al., 2003]. In detail, the higher the F statistic, the
lower the p value, and the better the feature is. This feature selection is simple and runs
fast. It is good in evaluating the statistical significance of the individual feature, but it
doesn't consider the interaction of the features, and probably, the final feature set is not
optimal. Otherwise there has been little research that deals with the feature selection

problem with specific respect to steganalysis.

We introduced the shape parameter of Generalized Gaussian Distribution (GGD) in the
wavelet domain to measure the image complexity and evaluate the steganalysis
performance [Liu, Sung, Xu, Ribeiro, 2006]; although the method proposed therein is
successful in detecting LSB matching steganography in color images and outperforms
other well-known methods, its performance is not so good in grayscale images, which is

generally more difficult and shown in chapter 2.

To improve the performance in detecting LSB matching steganography in grayscale

images, based on our previous work [Liu and Sung, 2007], in addition to correlation
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features described in the previous chapter, four new types of features are designed and a
Dynamic Evolving Neural Fuzzy Inference System (DENFIS) [Kasabov and Song, 2002;
Kasabov, 2002] is introduced in this chapter. We also adopt the feature selection of
Support Vector Machine Recursive Feature Elimination (SVMRFE) [Guyon et al., 2002;

Liu and Sung, 2007] to choose the features in our steganalysis.

Comparing against other well-known methods in terms of steganalysis performance, the
new feature set performs the best. DENFIS is superior to other compared learning
classifiers including SVM and adaboost. SVMRFE outperforms DENFIS based

sequential forward selection and statistical significance based feature selection like T-test.

Our experimental results also indicate that image complexity is an important parameter to
evaluation of the detection performance. At a certain information-hiding ratio, it is much
more difficult to detect the information-hiding behavior in high image complexity than

that in low complexity.

3.2 Feature Extraction

3.2.1 Entropy and High Order Statistics of the Histogram of the Nearest Neighbors

As shown in Fig. 2-2, there is high correlation of the adjacent pixels in ordinary images
and we have a hypothesis that the information-hiding behavior will affect the joint
distribution of the adjacent pixels. Based on this hypothesis, we consider the statistics of

the histogram of the nearest neighbors. In chapter 2, Fig. 2-2 just shows a 2-D case of the
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nearest neighbors. Here we consider a 3-D case. The grayscale value at the point (7, ) is
represented by x, the grayscale value at the point (i+1, ;) is y, and the grayscale value at
the point (i, j+1) is z. The variable H(x, y, z) denotes the occurrence of the pair (x, y, z) of

the image, or the histogram of the nearest neighbors (NNH).

The entropy of NNH (NNH_E) is calculated as follows:

NNH E = -3 p log, p, (3-1)
Where p denotes the distribution density of the NNH. The symbol o, denotes the

standard deviation of H (or NNH). The " high order statistics of NNH (NNH_HOS) is

given as:
ﬁZZZ HO%Z*%ZZZH@,M
NNH_HOS(r) = ¥ 33 (3-2)

Where N is the number of possible gray scales of the image, e.g., for an 8-bit grayscale

image, N = 256.

3.2.2 Probabilities of the Equal Neighbors

Besides the features on the histogram of the nearest neighbors, the probabilities of the
equal neighbors are extracted. The structures of the equal neighbors are shown in Fig. 3-1,
where a represents the pixel value. Equal neighbors mean that the pixel values in the

structure equal to each other.
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Fig. 3-1 The structures of the equal neighbors.

3.3 Introduction to DENFIS

Neuron-fuzzy inference systems consist of a set of rules and an inference method that are
embodied or combined with a connectionist structure for better adaptation. Evolving
neuron-fuzzy inference systems are such systems, where both the knowledge and the
mechanism evolve and change in time, with more examples presented to the system
[Kasabov 2002]. The dynamic evolving neuron-fuzzy inference system, or DENFIS
[Kasabov and Song, 2002], uses the Takagi-Sugeno type of fuzzy inference method
[Takagi and Sugeno, 1985]. The inference used in DENFIS is performed on m fuzzy rules
indicated as follows:

Ifx1is Rypand x5 is Ry and ... and x4 is Ry, then y is fi(x, X2, ..., X4)

Ifx;is Ry and x5 is Ry and ... and x4 is Ry, then y is f>(x, X2, ..., X4)

Ifx1is Ryj and x;1s Ryz and ... and x4 is Ry, then y is fr(x1, X2, ..., X4)
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Where “x;is R;”, i = 1,2, ..., m; j = 1,2,..., q, are m x q fuzzy propositions that form m

antecedents for m fuzzy rules respectively; x;, j = 1, 2, ... , g, are antecedent variables
defined over universes of discourse X;, j = 1,2, ... ,g,and Ry, i =1,2, ..., m; j=1,
2, ..., q are fuzzy sets defined by their fuzzy membership functions: X; >[0,1], i = 1,

2,....,m; j=1,2, ..., q. In the consequent parts of the fuzzy rules, y is the consequent

variable, and crisp functions f;, i = 1, 2, ... , m, are employed.

In the DENFIS model, all fuzzy membership functions are triangular type functions

defined by the three parameters, a, b, and c, as given below:
w(x) = mf(x,a,b,c) = max(min((x-a)/(b-a), (c-x)/(c-b)), 0) (3-3)

Where b is the value of the cluster centre on the x dimension, a = b —d x Dthr, d = 1.2 ~

2. The threshold value, Dthr, is a clustering parameter.

For an input vector x’ = [x,° x,° qu], the result of the inference, y°, or the output of the

system, is the weighted average of each rule’s output indicated as follows:

Z wifi(xlo,xzo,...,xqo)
i=1
’ (3-4)

<
Il
3

q
N .
where, Wi =HR,-j(xj i=12,..m;j=12,.,q.
j=1

41



In the DENFIS on-line model, the first-order Takagi-Sugeno type fuzzy rules are
employed. In the DENFIS off-line models, the first-order and an extended high-order
Takagi-Sugeno inference engines are used, corresponding to a linear model and an MLP-
based model, respectively. The experiments indicate that the DENFIS with MLP-based
model has the best prediction performance. The details of the DENFIS off-line learning

process is presented in the reference [Kasabov, 2002].

3.4 Feature Selection in Steganalysis

To detect the information-hiding behaviors in steganography, many articles proposed
different features or measures. In steganalysis, feature selection should be a general
problem; to our knowledge, however, few publications cope with this issue except
Avcibas et al. presented a universal steganalysis based on image quality metrics and
utilized analysis of variance (ANOVA) to choose the good measures [Avcibas et al.,
2003]. Essentially, this feature selection belongs to filtering approach and the final

feature set may not be optimal.

Generally, feature selection can be grouped into three categories: filtering, wrapper
methods and embedded methods. Filter methods select feature subsets independently
from the learning classifiers and do not incorporate learning [Xu and Chen, 2005; Pvlidis
and Noble, 2001]. A weakness of filtering methods is that they just consider the
individual feature in isolation and ignore the possible interaction of features among them.

Yet, the combination of these features may have a combined effect that does not
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necessarily follow from the individual performance of features in the group. If there is a
limit on the number of features to be chosen, we may not be able to include all

informative features.

Wrapper methods wrap around a particular learning algorithm that can assess the selected
feature subsets in terms of the estimated classification errors and then build the final the
final classifiers [Inza et al., 2002]. One of the well-known methods is Support Vector
Machine Recursive Feature Elimination (SVMRFE), which refines the optimum feature
set by using SVM in a wrapper approach to address the problem of gene selection in the
analysis of microarray data [Guyon et al., 2002]. Additionally, Sequential Forward
Selection (SFS) is a greedy search algorithm in wrapper methods. To deal with the issue
of feature selection in our steganalysis, we compare these three feature selections:
DENFIS based SFS (DENFIS-SFS), SVMRFE, and T-test, a filtering feature selection

which is similar to the ANOVA approach in steganalysis [Avcibas et al., 2003].

3.5 Experiments and Results

3.5.1 Experimental Setup

The original images in our experiments are 5000 TIFF raw format digital pictures, taken
in USA during 2003 to 2005. These images are 24-bit, 640x480 pixels, lossless true color
and never compressed. As mentioned in chapter 2, we cropped the original images into
256x%256 pixels in order to get rid of the low complexity parts of the images. The cropped

color images are converted into grayscales and LSB matching stego-images are produced
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by hiding data in these grayscales. The hiding ratio (the ratio of the file size of the hidden

data to the file size of the cover image) is 12.5%. The hidden data in any two images are

different.

We categorize the grayscale images (covers and stego-images) according to the image

complexity which is measured by the shape parameter S of the GGD of the HH wavelet

sub-band coefficients. Fig. 3-2 lists some cover samples with different shape parameters

in our experiments.

3.5.2 Feature Extraction and Comparison

—

The following features are extracted:

Shape parameter f of the GGD of the HH wavelet sub-band that measures the image
complexity.

Entropy of the histogram of the nearest neighbors, NNH_E, defined in (3-1).

The high order statistics of the histogram of the nearest neighbors, NNH_ HOS(7) in
(3-2), and r is set from 3 to 22, total 20 high order statistics.

Probabilities of the equal neighbors (PEN), described in 3.2.2.

Correlations features defined in chapter 2: C1 in (2-3), C(,/) in (2-4), C2 in (2-6),
Cu()) in (2-7), and Cg(t; k1) in (2-10).

We set the following lag distance to k£ and / in C(k,/) and get 14 features:
Dk=0,/=1,2,3,and4,/=0,k=1,2,3,and 4.
Dk=1,1=1,k=2,1=2k=3,1=3;k=4and =4

Nk=1,1=2k=21=1.
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Fig. 3-2 Some cover samples (scaled) and the shape parameters.
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In (2-7),/issetto 1, 2, 3, and 4. In (2-10), we set the following lag distances to k and / in
Ck(t, k1) and get following pairs:
Ck(t; 0,1), Cg(t; 0,2), Ce(1;1,0), Cg(t; 2,0), Ce(t; 1,1), Cg(#; 1,2), and Cg(f; 2,1). ¢ 1is set
1,1.5,2,25,3,3.5,4,4.5,and 5.
We record the fifth type of correlation features as CF; types 1 to 5 as EHPCC (Entropy,
High order statistics, Probabilities of the equal neighbors, Correlation features, and

Complexity).

To compare EHPCC with other well-known features, the Histogram Characteristic
Function Center of Mass (HCFCOM) [Harmsen and Pearlman, 2003] is extracted
because the hiding process of LSB matching steganography can be modeled in the
context of additive noise. We extend the HCFCOM to the high order moments.
HCFHOM stands for HCF center of mass High Order Moments; HCFHOM (r) denotes
the " order statistics. In our experiments, the HCFHOM feature set consists of
HCFCOM and HCFHOM(r) (r = 2, 3, and 4). We also compare Adjacency HCFCOM
(A.HCFCOM) and Calibrated Adjacency HCFCOM (C.A.HCFCOM) proposed by Ker
[Ker, 2005]. Additionally, Farid and Lyu [Lyu and Farid, 2004, 2005] presented an
approach to detecting hidden messages in images by building High-Order Moment
statistics in Multi-Scale decomposition domain (we call these features HOMMS), which

consists of 72-dimension features in grayscale images.

All the features mentioned above are listed in table 3-1.
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Table 3-1 Proposed and compared features in our experiments.

The number
Feature set Description of the features The source
of Features
Entropy of NNH
Defined in (3-1) 1
(NNH_E)
High order statistics of NNH
Defined in (3-2) 20
(NNH-HOS (r),r=3,4,...,22)
Probabilities of Equal Neighbors Described in 3.2.2
13
(PEN) Fig. 3-1 presents the structures of the equal neighbors.
Cl1 defined in (2-3);
C(k, 1) defined in (2-4):
C(0, 1), €(0, 2), C(0, 3), C(0, 4), C(1,0), C(2, 0), CG3,
0), C(4,0), C(1,1), C(2, 2), CG3, 3), C(4, 4), C(1, 2),
EHPCC
C@2, 1y
Correlation Features C2 defined in (2-6);
83
(CF) Cu(D) in (2-7):
Cu(1), Cu(2), Cu(3), Cu(4);
Ce(t; k1) in (2-10):
Cr(t; 0,1), Ci(t; 0,2), Ci(551,0), Cr(#; 2,0), Cr(t; 1,1),
Cg(t; 1,2), and Cg(; 2,1).
tisset1,1.5,2,2.5,3,3.5,4,4.5,and 5.
The shape parameter f in (2-1)
complexity measure 1
[Sharifi and Leon-Garcia, 1995; Liu et al. 2006]
HCFCOM
and the high order statistics
HCFHOM [Harmsen and Pearlman, 2003] 4
HCFHOM(r)
(r=2,3,4)
A.HCFCOM Adjacent HCFCOM [Ker, 2005] 1
C.A.HCFCOM Calibrated adjacent HCFCOM [Ker, 2005] 1
High-order moment statistics in
HOMMS [Lyu and Farid, 2004 and 2005] 72

multi-scale decomposition domain
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Fig. 3-3 lists the F statistics and p-values of NNH E and NNH_HOS, shape parameter f
and correlation features, Probabilities of the equal neighbors, HOMMS features,
HCFHOM features, A. HCFCOM and C.A. HCFCOM features, extracted from the 5000
grayscale covers and the 5000 LSB matching stego-images. Fig. 3-3 indicates that,
regarding the statistical significance, on the average, NNH-E, NNH-HOS, correlation
features, and probabilities of the equal neighbors with high F statistics and very small p-
values are better than HCFHOM, A. HCFCOM and C.A.HCFCOM features; and
HOMMS features are not good because the p-values of most HOMMS features are high
and the F statistics are small, it implies that the discrimination ability of HOMMS
features is very weak. Fig. 3-3 also shows that the F statistic of the shape parameter S is
small and the p-value is close to 0, which means that the information-hiding changes the

image complexity of the original cover, but the affection is very weak.
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Fig. 3-3 F statistics and p-values of NNH-E (feature dimension 1 on the upper left),
NNH-HOS (feature dimension 2 to 21 on the upper left), shape parameter B (feature
dimension 1 on the middle left), correlation features (feature dimension 2 to 84 on the
middle left), probabilities of equal neighbors, HOMMS, HCFHOM , A. HCFCOM, and

C.A. HCFCOM features.
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3.5.3 Detection Performance on Feature Sets

To compare the detection performances on these feature sets with different classifiers,
besides DENFIS, we apply the following classifiers to each feature sets. These classifiers
are Naive Bayes Classifier (NBC), Support Vector Machines (SVM), Quadratic Bayes
Normal Classifier (QDC), and adaboost that produces a classifier composed from a set of
weak rules [Friedman, Hastie and Tibshirani, 2000; Heijden et al., 2004; Vapnik, 1998;

Schlesinger and Hlavac, 2002].

Thirty experiments are done on each feature set using each classifier. In each experiment,
training sets are randomly chosen and the remaining sets are tested. The testing results
consist of true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). In each category of the image complexity, the number of cover samples is
approximately equal to the number of stego-samples, so the testing accuracy is calculated
by (TP+TN) / (TP+TN+FP+FN). The average testing accuracy and the standard error of
the thirty experiments are compared. Table 3-2 lists the testing results (mean values and
standard deviations) on each feature set with the use of SVM, ADABOOST, NBC, and
QDC. In each category of image complexity, the best testing accuracy is in bold. In the
five categories of image complexity, all the highest testing results happen to the feature
set of EHPCC. The results indicate that EHPCC is superior to its subset CF; CF is better
than HCFHOM, A.HCFCOM, and C.A.HCFCOM; the detection performance of
HOMMS is not good. The results in table 3-2 are consistent with the demonstration of the
statistical significance in Fig. 3-3. Regarding the detection performance of these four

learning classifiers, SVM and adaboost are better than NBC and QDC.
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Since EPHCC is the best feature set, we compare the detection performance by applying
DENFIS to EPHCC against the best testing values in table 3-2; the results are shown in

table 3-3. On the average, DENFIS is better than SVM and adaboost.

3.5.4 Comparison of Feature Selections
Although EHPCC has the best detection performance, Fig. 3-3 shows that not all the
features in EHPCC are good, not all the elements of HOMMS are useless. If we combine

all the features listed in table 3-1, how to choose the features?

Since tables 3-2 and 3-3 show that DENFIS is better than SVM and adaboost and
Sequential Forward Selection (SFS) is a classical approach in wrapper feature selections,
we compare DENFIS based SFS (DENFIS-SFS) with SVMRFE and T-test. Fig. 3-4 plots
the cross-validation detection performances under the feature dimension one to forty with
the application of DENFIS and SVM to the feature selections: SVMRFE, DENFIS-SFS,
and T-test. It shows that, while f > 0.8, by applying SVM to all the feature sets from
feature dimension one to forty, it fails to detect the steganography; on the contrary,
DENFIS works well. Fig. 3-4 indicates that, regarding the testing accuracy and the
stability spanning over different image complexity, the classifier DENFIS outperforms
SVM; the feature selection SVMRFE is superior to DENFIS-SFS and DENFIS-SES is
better than T-test; the combination of DENFIS with SVMRFE achieves the best detection

performance.
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Table 3-2 Testing results on the feature sets (mean value + standard deviation, %). In
each category of image complexity, the highest test accuracy is in bold. As 3> 0.8, SVM

fails to classify the HOMMS feature set.

Classifier
Feature set SVM ADABOOST NBC QDC
B and testing accuracy

EHPCC 91.8+0.9 89.0=1.0 76.0+1.9 703+18
CF 850+ 1.0 820+1.2 77.0+2.1 800+ 1.7
HCFHOM 609+1.3 57.6+15 575+15 53.4+1.0
=04 HOMMS 536=1.0 50.6 2.0 469+ 17 D1=14
C.A.HCFCOM 553+0.6 543+1.1 538+ 1.1 554+1.1
AHCFCOM 55.6£0.9 554+18 547+ 14 555+1.1
EHPCC 86.2 £0.6 799+1.0 66.8+0.9 65108
CF 77.6+04 722+1.0 67.6+1.3 70.6+ 1.3
0406 HCFHOM 58.4+0.6 56.6+1.1 56.1£0.9 545+0.6
HOMMS 188+ 1.6 476+1.0 471408 440%15
C.A.HCFCOM 58.1+0.7 57.0+ 1.5 578=1.1 579+08
A.HCFCOM 573+0.6 56.6+0.9 56.8 0.7 56.6 % 0.6
EHPCC 737%13 694+12 614=14 62.8=09
CF 66.7+0.7 63.9+1.2 62.1+1.1 623+12
HCFHOM 57.6 =09 553+1.1 542+13 53.1£0.7
0.6:08 HOMMS 473+0.7 37+13 454+12 206+24
C.A.HCFCOM 56.0+ 1.1 564+1.0 558=1.0 562+08
A.HCFCOM 56.6 0.6 549+12 552+1.1 555+12
EHPCC 63.721.0 63.0=14 565+12 614=1.0
CF 60.0+1.0 57T4+18 578+15 575+16
HCFHOM 539+12 520+16 532+14 51.7+0.6
051 HOMMS / 420+15 44508 416+28
C.A.HCFCOM 524+0.7 526+15 521+13 S31+12
AHCFCOM 533+1.0 503+13 518+12 508=16
EHPCC 54.6+02 613+1.2 58.0+12 60.0+0.5
CF 597+1.7 589+23 57.1+1.5 584+1.3
HCFHOM 544+0.8 27+16 5S1.9+17 532+18
7! HOMMS / 467+ 18 504+ 1.4 31+15
C.A.HCFCOM 547405 527+1.7 31<14 544+09
A.HCFCOM 543403 512+16 51.6+2.0 35+14
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Table 3-3 Applying DENFIS to EHPCC vs. the best results in Table 2.

§ DENFIS BEST TESTING IN TABLE 2
<04 93.2+1.1 91.8+0.9
04-0.6 87.7+1.2 86.2+0.6
0.6-0.8 72.6+1.6 73.7+1.3
08-1 62.5+2.2 63.7+1.0
> 1] 628+ 1.8 61.3+1.2
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Fig. 3-4 The detection performance with the use of SVM and DENFIS to the feature
selections: SVMRFE, DENFIS-SFS, and T-test. In the lower subfigures (0.8 <3 <1 and
1.0 <B), SVM fails to classify the testing sets of covers and stego-images.
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3.6 Conclusions

In this chapter, a scheme of detecting LSB matching steganography in grayscale images
is presented based on feature mining and pattern recognition techniques. Five types of
features are extracted and several learning classifiers are applied. Experimental results
indicate that the proposed feature set is better that other well-known feature sets
including HCFHOM, HOMMS, A.HCFCOM, and C.A.HCFCOM. DENFIS is superior
to adaboost, SVM, NBC, and QDC. To deal with the issue of feature selection in
steganalysis, we compared three feature selections: SVMRFE, DENFIS-SFS, and T-test.
SVMREFE performs the best. The learning classifier DENFIS combining with the feature

selection of SVMRFE achieves the best detection performance.

The experimental results also show that image complexity is an important parameter for
evaluating the steganalysis performance. At a certain information-hiding ratio, the
detection performance is highly different in different image complexity. It is still very
challenging in detecting the information-hiding behavior in the grayscale images with

high complexity.
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CHAPTER 4: STEGANALYSIS OF TRANSFORM-HIDING

STEGANOGRAPHY

4.1 Introduction

Transform-hiding steganography hides data in the coefficients of the transform domain
such as DCT, DWT or DFT. JPEG image is one of the most popular media in Internet
and it is easily used to carry hidden data and many information-hiding techniques/tools
embed data in JPEG images; therefore, it’s important for many purposes to design a
reliable algorithm to decide whether a JPEG image found on the Internet carries hidden

data or not.

There are a few methods for detecting JPEG steganography. HCFCOM and HOMMS are
two well-known universal detectors which are described in the previous chapters, and
they are suitable in detecting the information-hiding in JPEG images. Additionally,
Fridrich et al. [Fridrich et al., 2003] presented a method to estimate the cover-image
histogram from the stego-image. Another new feature-based steganalytic method for
JPEG images was proposed and the features are calculated as an L1 norm of the
difference between a specific macroscopic functional calculated from the stego-image
and the same functional obtained from a decompressed, cropped, and recompressed
stego-image [Fridrich, 2004]. Harmsen and Pearlman [Harmsen and Pearlman, 2004]
implemented a detection scheme using only the indices of the quantized DCT coefficients

in JPEG images.
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In this chapter, a steganalysis scheme for JPEG images using polynomial fitting is
presented. Many stegnographic systems in JPEG images modify the quantized DCT
coefficients; as a result, the marginal density of the coefficients is affected. Based on this
observation and concern, polynomial fitting is designed to fit the logarithmic transform
domain of the marginal density, and the errors between the histogram and the fitting
curve are extracted as the detector. Classification techniques are utilized to recognize the
different types of the steganograms and the covers. In this chapter, an evolutionary neuro-
fuzzy inference system is introduced to estimate the information-hiding length in the
steganograms based on the detector. Experimental results indicate that this method is
very successful in detecting the information-hiding types and the information-hiding
length in the imbalance multi-class environment which consists of plenty of covers, and
the JPEG steganograms produced by CryptoBola, F5, and JPHS information-hiding

systems.

In the following part, JPEG compression and the information-hiding is introduced, and
the detector of the errors of the Generalized Gaussian Distribution (GGD) model of the
quantized DCT coefficients and the polynomial fitting is designed [Liu, Sung, Xu and

Venkataramana, 2006], then the experiments and the results are demonstrated.

4.2 JPEG Compression and Information-hiding

JPEG is the image compression standard developed by the Joint Photographic Experts

Group (official name ITU-T T.81, ISO/IEC IS 10918-1). In practice, JPEG is most often
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used to compress 24-bit color or 8-bit grayscale images. In 24-bit color images, each
numeric value that describes the color of a pixel in a 24-bit color image actually breaks
down into three values that define the exact color. There are two ways to define this set of
three color values. Most of the computer-literate are familiar with the "RGB" color
description scheme, where each pixel value is a set of by three numbers giving the red,
green, and blue color value. For example, in RGB, each 24-bit value breaks down into
three 8-bit values, each giving the intensity of red, green, and blue in a scale from 0 to
255. In the "luminance-chrominance" or YCbCr scheme, used in traditional US analog
color TV, a pixel value is given by its grayscale brightness level, or "luminance", and by
a color value, or "chrominance". Chrominance actually amounts to two values, one that
describes the "hue", or specific color within a linear range of colors, and the other that
describes the "saturation", or intensity of the color. The luminance information contains
most of the detail perceived by the human eye, while the overlying chrominance color
information can be fuzzy without causing any serious image degradation. JPEG
compression applies luminance-chrominance scheme because it offers greater
possibilities for compression. For example, compression can be increased by only
sampling every other horizontal and vertical pixel in a chrominance block, which cuts the
number of chrominance bits to a fourth. This is known as "horizontal and vertical
decimation" using a factor of 2, and results in one decimated 8x8 chrominance block for
every four luminance blocks. JPEG divides up each of the three YCbCr color planes into
8 by 8 pixel blocks, and then calculates the discrete cosine transform (DCT) of each
block. A quantizer rounds off the DCT coefficients according to the quantization matrix.

This step produces the "lossy" nature of JPEG, but allows for large compression ratios.
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JPEG compression technique uses a variable length code on these coefficients, and then

writes the compressed data stream to an output file.

Generally, many steganographic systems in JPEG images implement information-hiding
by modifying the quantized DCT coefficients, e.g., JPEG-JSteg sequentially replaces the
least-significant bit of DCT coefficients with the message’s data, but it is easy to detect
[Zhang and Ping, 2003]. Instead of replacing the least-significant bit of DCT coefficient
with message data, F5 decrements its absolute value in a process called matrix encoding

[Westfeld, 2001].

4.3 Detector of Errors of Polynomial Fitting (EPF)

As mentioned in chapter 2, several papers describe the Generalized Gaussian Distribution
(GGD) model in transform domains, such as DCT, DFT, or DWT [Sharifi and Leon-
Garcia, 1995]. The marginal density of DCT coefficients may be achieved by adaptively

varying two parameters of the GGD, which is defined as follows:

: __ b ;
p(x,a,ﬁ)—mexp{—ﬂﬂ/a) H (4-1)

Where I'(e) is the gamma function, a models the width of the probability distribution

function (PDF) peak and f is inversely proportional to the decreasing rate of the peak. a
is referred to as the scale parameter while £ is called the shape parameter. The GGD
model contains the Gaussian and Laplacian PDFs as special cases, using f =2 and f =1,

respectively.
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For the quantized JPEG DCT coefficients, the values of x in (1) are the discrete values, 0,
1,-1,2,-2,3, -3, etc. The marginal density of the quantized JPEG DCT coefficients, A(x),

can be approximately modeled as follows:

B
h(x) = mexp{—(waﬂ’}, x=0,1,-1,2,-2, ... (4-2)

Applying logarithmic to (2), in the case of x> 0,

N _ B B B_ 4_p. b
S () = loglh()} =loglo ot =(1 x| /@) = = B-x (4-3)
s B
A=log{—L . p—
Where Og{2aF(1/ﬂ)} B=a "
A Taylor series to (3),
" 3)
0= f@+ @ -0+ LD G0 LD ey 4 (4-4)

When a is set to 0, f{x) can be approximately represented by the n™ polynomial series.
Considering the computational complexity of the Taylor series, we denote 7.(¥) as the
n™ polynomial that fits function f{x) best in a least-square sense.

Pa(¥)=p()ex" +p(2)ex"" +..+ p(n)ex+ p(n+1) (4-5)
The error at any value for x is defined as:

R,(x)=f(x)=p,(x) (4-6)

We call the measure R,(x) Errors of Polynomial Fitting (EPF).

Generally, most JPEG steganographic systems modify the quantized DCT coefficients. It
may affect the marginal density of the DCT coefficients and the distribution may deviate

from the GGD. As a result, some EPF errors of the steganograms will differ from those of
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the untouched JPEG images. Hence, the presence of hidden data in these JPEG

steganography may be caught according to the statistics of the R, (x) .

Fig. 4-1(a) lists a JPEG cover of 18232 bytes and Fig. 4-1(b) shows the CryptoBola JPEG
steganogram of 18202 bytes wherein a text file of 682 bytes is hidden. The hidden text
file is not shown here. Fig. 4-1(c) shows the logarithmic of the marginal densities of the
quantized DCT coefficients and Fig 4-1(d) demonstrates the EPF. Fig. 4-1(c) indicates
that the marginal densities of the DCT coefficients are different between the cover and

the steganogram, which results in the difference of the EPF (Fig. 4-1(d)).

(a) cover (b) CryptoBola steganogram

EPRF of the cover and the stego image
logarithmic of the marginal denisity of the DCT coefficients

— % — CryptoBola stegnogram |
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Fig. 4-1 A JPEG cover (a), the steganogram (b), the logarithmic of the histogram of the
DCT coefficients (c), and the EPFs (d).
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4.4 Experimental Results

The original images are TIFF raw format digital pictures taken during 2003 to 2005.

These images are 24-bit, 640x480 pixels, lossless true color and never compressed. We

cropped the original images into 256x256 pixels in order to get rid of the low complexity

parts. After that, we converted the cropped images into JPEG and the quality is 75 (the

default quality). These JPEG images as well as other JPEG images collected during 2002

to 2003 are the original covers. The following three different information hiding

techniques are adopted:

1.

CryptoBola JPEG. It determines which parts (bits) of the JPEG-encoded data play
the least significant role in the reproduction of the image, and replace those bits
with the bits of the cipher text. CryptoBola is available at

http://www.cryptobola.cony/.

F5 algorithm [Westfeld, 2001]. This algorithm F5 withstands visual and statistical
attacks, yet it still offers a large steganographic capacity. F5 implements matrix
encoding to improve the efficiency of embedding. Thus it reduces the number of
necessary changes. F5 employs permutative straddling to uniformly spread out the
changes over the whole steganogram.

JPHS (JPHIDE and JPSEEK). The design objective was not simply to hide a file
but rather to do this in such a way that it is impossible to prove that the host file
contains a hidden file. Given a typical visual image, a low insertion rate (under
5%) and the absence of the original file, it is not possible to conclude with any

worthwhile certainty that the host file contains inserted data. As the insertion
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percentage increases the statistical nature of the jpeg coefficients differs from
"normal" to the extent that it raises suspicion. JPHS for Windows (JPWIN) is

available at: http://digitalforensics.champlain.edu/download/jphs_05.zip/.

In our experiments, we apply the sixth polynomial that fits the logarithmic of the
histogram of the absolute values of the quantized DCT coefficients in the luminance
component, and the error between the logarithmic of the histogram and the polynomial
fit Rg(n) (n = 1, 2, ...30) are extracted. Additionally, the measures of HCFCOM and
HOMMS are extracted for comparison. Adaboost and SVM are applied to different
feature sets. We perform each experiment 30 times. In each time, the training samples
are randomly chosen and the remaining samples are tested for validation. The ratio of
training to test samples is 1:1. The mean values and standard deviation of the test

accuracy in the 30 times are compared.

Table 4-1 Detection performance (mean testing accuracy + standard deviation, %) on
different feature sets in binary class environment (cover and the steganogram)

Hiding method CryptoBola F5 JPHS

Classifier

Adaboost SVM Adaboost SVM Adaboost SVM
Feature set

(Remln=12, ..., 5} 100 0 100 =0 95.6+0.7 | 965+0.7 | 85.8+23 | 83.6+2.3

{Re(m)ln=1,2, ..., 10} 100+ 0 99.9+0.1 95.5+0.8 95.6 £ 0.8 87.7+1.7 | 862+28

{Re(mn=1.2, ..., 20} 99.9 £ 0.1 99.8£0.1 94.1+0.7 95.0+0.8 87.5+20 | 834+22

HCFCOM 56.4+1.6 53.1+22 59.7+1.8 55.8+£2.1 62.7+2.7 | 66.9+3.6

HOMMS 73.6 1.7 50.0+0.1 772+ 1.7 500 81.2+2.7 50+0
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Table 4-1 lists the mean testing accuracy and the standard deviation using adaboost and
SVM with different feature sets, showing that the detection performance of EPF is
superior to those of HCFCOM and HOMMS. Fig. 4-2 plots the ROC curves of the
detection performance on different feature sets with the use of adaboost. Table 4-1 and
Fig. 4-2 indicate that EPF is the best detector in the steganalysis of the three types of
JPEG steganography. Fig. 4-2(a) indicates that in steganalaysis of CryptoBola
steganography, the area below the EPF curve (EPF curve is overlapped with the x-axis) is
zero, which means that the detection performance on EPF is perfect, there is no error in
classification of covers and steganograms. However, the detection performances on
HCFCOM and HOMMS are not good. Fig. 4-2(b) and Fig. 4-2(c) also indicate that the
detection performances on EPF are the best, and those on HCFCOM and HOMMS are

not so good.

Table 4-2 lists the testing results to the detector of EPF with the use of One-Against-All
decomposition for Support Vector Machine (OAASVM) [Schlesinger and Hlavac, 2002;
Vapnik 1998]. Table 4-2 indicates that, in the multi-class JPEG images, by applying
OAASVM to EPF, the correction prediction for covers, cryptobola and F5 steganograms
is very successful; but the discrimination between covers and JPHS steganograms is not
so good. To obtain a better prediction for covers and JPHS steganograms, we apply
adaboost to the EPF features. Table 3 gives the testing results. Obliviously, just regarding
the classification of covers and the JPHS on the EPF features, adaboost is superior to

OAASVM.
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Fig. 4-2 ROC curves in the steganalysis of the three types of steganography

Table 4-2 The multi-class prediction in the multi-class JPEG images with the use of

OAASVM
Multi-class prediction
Cover | CryptoBola F5 JPHS Correction pr.ediction in the
Multi-class testing sets multi-class
Cover 10000 9967 3 30 0 99.7%
CryptoBola 800 3 796 1 0 99.5%
F5 800 75 1 724 0 90.5%
JPHS 400 389 8 0 3 0.8%

Table 4-3 The prediction between covers and JPHS steganograms with the use of

Adaboost
Prediction . L.
M Cover JPHS Correction prediction
Cover 10000 9926 74 99.3%
JPHS 400 175 225 56.3%
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Fig. 4-3 The real distribution of the information-hiding ratios (left) and the prediction
(right) with the use of DENFIS.

We also apply DENFIS to predict the information-hiding length (ratio) in the JPEG

steganograms. Here we specially measure the information-hiding ratio as the ratio of the
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modification-length of the non-zero quantized DCT coefficients to the length of the non-

zero quantized DCT coefficients.

Fig. 4-3 shows the real distribution of the information-hiding ratio (left) and the
prediction (right) on the three JPEG stego-images. The prediction of the hiding ratio is
denoted as pr, the real hiding ratio is denoted as r». We adopt the following measure EP

to evaluate the error of the prediction.

EP = abs(pr —rr) / rr * 100% (4-7)

Table 4-4 gives the mean values of EP and the standard errors in the three JPEG

steganograms.

Table 4-4 Mean values and standard errors of the EPFs.

CryptoBola F5 JPHS (JPWIN)

mean(EP) / std(EP), % 6.82/7.7 22.4/22.9 13.1/113

4.5 Conclusions and Future Work

In this chapter we propose a scheme of steganalysis of JPEG images. We extract the
errors between the logarithmic of the marginal density of the quantized DCT coefficients
and the polynomial fitting as the detector, and apply several computational techniques to

the detection. Results show that, designed method is successful in detecting the presence
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of hidden data in the JPEG steganograms produced by CryptoBola, F5, and JPHS. It is
superior to the well-known methods of HCFCOM and HOMMS. We apply OAASVM,
adaboost, and DENFIS to the EPFs of the imbalance multi-class JPEG images. Results
indicate that our method is successful in detecting the information-hiding types and the

information-hiding length.

Future work includes improving and expanding method to detect the location of

information-hiding by combining the features proposed by Fridrich [Fridrich, 2004] and

extracting the payload without the prior knowledge of the information-hiding techniques.
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CHAPTER 5: INTRODUCTION TO BIOINFORMATICS

5.1 Bioinformatics in Brief

Bioinformatics derives knowledge from computer analysis of biological data and is the
intersection of multiple science fields including molecular biology, computer science,
statistics, etc. There are various definitions of bioinformatics on the Web.

Bioinformatics definition by bioinformatics definition Committee, National Institute of

Mental Health released on July 17, 2000 (source: http://www.bisti.nih.gov/ )

“The NIH Biomedical Information Science and Technology Initiative Consortium agreed
on the following definitions of bioinformatics and computational biology recognizing that
no definition could completely eliminate overlap with other activities or preclude
variations in interpretation by different individuals and organizations.

Bioinformatics: Research, development, or application of computational tools and
approaches for expanding the use of biological, medical, behavioral or health data,
including those to acquire, store, organize, archive, analyze, or visualize such data.
Computational Biology: The development and application of data-analytical and
theoretical methods, mathematical modeling and computational simulation techniques to
the study of biological, behavioral, and social systems.”

The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics
as "Bioinformatics is the field of science in which biology, computer science, and
information technology merge into a single discipline. There are three important sub-
disciplines within bioinformatics: the development of new algorithms and statistics with
which to assess relationships among members of large data sets; the analysis and

interpretation of various types of data including nucleotide and amino acid sequences,
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protein domains, and protein structures; and the development and implementation of tools
that enable efficient access and management of different types of information."

Major research efforts in bioinformatics include sequence analysis, genome annotation,
computational evolutionary biology, measuring biodiversity, analysis of gene expression,
analysis of regulation, analysis of protein expression, analysis of mutation in cancer,
prediction of protein structure, comparative genomics, and high-throughput image

analysis, etc. [ http://en.wikipedia.org/wiki/Bioinformatics]

5.2 Introduction to Microarays and SNPs

Single Nucleotide Polymorphisms (SNPs)

A Single Nucleotide Polymorphism or SNP (pronounced snip) is a DNA sequence
variation occurring when a single nucleotide - A, T, C, or G - in the genome (or other
shared sequence) differs between members of a species (or between paired chromosomes
in an individual). For example, two sequenced DNA fragments from different individuals,
AAGCCTA to AAGCTTA, contain a difference in a single nucleotide. In this case we
say that there are two alleles: C and T. SNPs typically have three genotypes, denoted
generically AA, Aa and aa. In the example above, the three genotypes would be CC, CT
and TT. Each individual has many single nucleotide polymorphisms that together create a
unique DNA pattern for that person. These changes may cause disease, and may affect
how a person reacts to bacteria, viruses, drugs, and other substances. For example, Sickle
cell anemia (SCA) is the most common inherited blood disorder in the United States,

affecting about 72,000 Americans or 1 in 500 African Americans. SCA is an autosomal
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recessive disease caused by a point mutation (SNP) in the hemoglobin beta gene (HBB)
found in region 15.5 on the short arm (p) of chromosome 11 [genes and diseases,

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=gnd].

Additionally, the following phenomena are common in our life.

1) One man who drinks alcohol and smokes cigarettes lives to age 90 without getting
liver or lung cancer; another man who smokes and drinks the same amount gets cancer at

age 60; the third one who does not smoke and drink gets cancer at age 55.

2) One woman's breast cancer responds to chemotherapy, and her tumor shrinks; another

woman's breast cancer shows no change after the same treatment.

How do we explain these differences? SNPs in the human genome may be the solutions.
The human genome is the complete set of instructions for life. Except for red blood cells,
which have no nucleus, the human genome is located in the nucleus of every cell in the
body. There are 22 pairs of chromosomes and one pair of sex chromosomes.
Chromosomes are made of deoxyribonucleic acid (DNA), which contains only four
chemical bases or building blocks: Adenine (A), Thymine (T), Cytosine (C), and Guanine
(G). There are roughly 3.2 billion chemical bases (A, T, C, G) in the human genome.
Each DNA molecule is made up of two long complementary (related) strands, or "double
helix” and A always pairs with T, and C with G, the order on one strand dictates the order
on the other. Only about 3 percent of the human genome is actually used as the set of
instructions and these regions are called coding regions and scattered throughout the

chromosomes.
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A coding region contains genes. A gene is a unique DNA sequence within a chromosome
that ultimately directs the building of a specific protein with a specific function. Close to
each gene is a "regulatory" sequence of DNA, which is able to turn the gene "on" or
"off." There are at least 35,000 genes in the human genome, and there may be more.
There is no function for most of the remaining 97 percent of the genome. These regions
are called noncoding regions. An amazing aspect of the human genome is that there is so
little variation in the DNA sequence when the genome of one person is compared to that
of another. Of the 3.2 billion bases, roughly 99.9 percent are the same between any two
people. It is the variation in the remaining tiny fraction of the genome, 0.1 percent--
roughly several million bases--that makes a person unique. This small amount of
variation determines attributes such as how a person looks, or the diseases he or she
develops. Most variations in the human genome have no known effect at all because they
occur in noncoding regions of the DNA. In addition, there are some changes that do
occur in coding and regulatory regions, yet they have no known effect. All these are
silent variations. Some of the variations that occur in the coding and regulatory regions of
genes have "harmless" effects. They can, for example, change the way a person "looks."
Some people have blue eyes, others brown; some are tall, others short; and some faces
are oval, others round. Other variations in coding regions are harmless because they

occur in regions of a gene that do not affect the function of the protein made.

There are a group of variations in coding and regulatory regions that result in harmful

effects. These are called mutations. They cause disease because changes in the genome's

instructions alter the functions of important proteins that are needed for health. For
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example, diabetes, cancer, heart disease, Huntington's disease, and hemophilia all result
from variations that cause harmful effects. In a "simple" disease such as hemophilia,
variation in one gene is sufficient to cause disease symptoms. By contrast, in a "complex"
disease like cancer, symptoms are seen only after many variations have occurred in
different genes in the same cell. Finally, there are genetic variations that have "latent"
effects. These variations, found in coding and regulatory regions, are not harmful on their
own, and the change in each gene only becomes apparent under certain conditions. Such
changes may eventually cause some people to be at higher risk for cancer, but only after
exposure to certain environmental agents. They may also explain why one person
responds to a drug treatment while another does not. Here is part of the genome from two
people who are both smokers and drinkers, but only one of them gets cancer. The zoom
into the chromosomes of these two men shows just a sampling of the differences in
variation that are responsible for their individual cancer risk. The variations themselves
do not cause cancer. They only affect each person's susceptibility to tobacco smoke and

alcohol after exposure.

SNPs are scattered throughout the genome and are found in both coding AND noncoding
regions. SNPs can cause silent, harmless, harmful, or latent effects. They occur with a
very high frequency, with estimates ranging from about 1 in 1000 bases to 1 in 100 to
300 bases. This means that there could be millions of SNPs in each human genome. The
abundance of SNPs and the ease with which they can be measured make these genetic
variations significant. Most SNPs occur in non-coding regions and do not alter genes.

Scientists are finding that some of these SNPs have a useful function. If a SNP is
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frequently found close to a particular gene, it acts as a marker for that gene. The
remaining SNPs occur in coding regions. They could alter the protein made by that
coding region, which in turn could influence a person's health

[http://www.nci.nih.gov/cancertopics/understandingcancer/geneticvariation .

Microarrays

In the past several years, a new technology, called DNA microarray, has attracted
tremendous interests among biologists. This technology promises to monitor the whole
genome on a single chip so that researchers can have a better picture of the interactions

among thousands of genes simultaneously.

Microarray is a 2D array, typically on a glass, filter, or silicon wafer, upon which genes
or gene fragments are deposited or synthesized in a predetermined spatial order allowing
them to be made available as probes in a high-throughput, parallel manner. Microarrays
include different kinds of biological assays: DNA microarrays, protein microarrays,
tissue microarrays, transfection microarrays, chemical compound microarrys, and
antibody microarrays. A DNA microarray (also commonly known as gene chip, DNA
chip, genome chip or gene array) is a collection of microscopic DNA spots, arrayed on a
solid surface by covalent attachment to chemically suitable matrices. An array is an
orderly arrangement of samples. It provides a medium for matching known and unknown
DNA samples based on base-pairing rules (i.e., A-T and G-C for DNA; A-U and G-C for
RNA) and automating the process of identifying the unknowns [Simon et al., 2003;

Muller and Nicolau, 2005].
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DNA microarray, or DNA chips are fabricated by high-speed robotics, generally on
glass but sometimes on nylon substrates, for which probes with known identity are used
to determine complementary binding, thus allowing massively parallel gene expression
and gene discovery studies. An experiment with a single DNA chip can provide
researchers information on thousands of genes simultaneously [Lander et al., 1999,

Allison, 2005].

There are three types of microarrays, two are genomic and the other is “transcriptomic”,
which measures mRNA levels. The first one is called microarry expression analysis,
which determines the gene expression level, or volume. And the arrays in this type of
analysis, so-called “expression chips”, can are used in drug development, drug response,
and therapy development. The second called microarray Comparative Genomic
Hybridization (CGH) is applied to look for genomic gains and losses or for a change in
the number of copies of a particular gene involved in a disease state. The third one is
used to detect mutations or polymorphisms in a gene sequences, the target, or
immobilized DNA  including single nucleotide  polymorphism  (SNP).

[http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html].

The microarray (DNA chip) technology is having a significant impact on genomics study.
Many fields, including drug discovery and toxicological research, etc., will certainly

benefit from the use of DNA microarray technology. For example, if a certain gene is
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over-expressed in a particular cancer, expression chips can be used to see if a new drug
will reduce over-expression and force the cancer into remission. In response to infection,
certain cell types will express sets of genes and synthesize certain proteins that respond to
the stress. Messenger RNA (mRNA) is like a photocopy of a blueprint that is used in the
shop to build a specific type of protein. In a microarray, we can attach sequences from a
range of genes to a glass slide in a series of dots, and then bind the mRNA extracted from
a population of cells and measure how much binds to each dot. That gives us a snapshot
of which genes are being expressed at any given time. Compare the patterns for mRNA
from, for example, normal breast tissue and from a breast tumor, and you can identify
proteins that are only present in the tumor. Those proteins are potential targets for cancer
treatments, vaccines, and other therapeutics. Other applications of microarrays include
tumor classification, risk assessement, and prognosis prediction, drug development,
therapy development, and tracking disease progression, etc. The more details can be

found in the source [http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html].

Since microarray can be used to examine the expression of thousands of genes
simultaneously, absolutely, it promises to revolutionize the way scientists examine gene
expression and represent an important and necessary first step in our understanding and
cataloging of the human genome. Microarray data may contain high variables of the
genes, it is very important and challenging to mine the critical or related genes from the
microarray data and construct the association between the data and the phenotypes.

Under my advisor’s direction, I focused my dissertation research in bioinformatics on
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microarray analysis and tagging SNP selection. The reminder chapters are organized as
follows. Chapter 6 presents the algorithms of recursive feature addition and lagging
prediction peephole optimization to improve the classifications of microarray data
analysis. Chapter 7 expands the algorithm of recursive feature addition to tagging SNP
selection and introduces a method of SNP selection by calculating the support vector

weights and the idea of recursive feature addition.
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CHAPTER 6: MICROARRAY GENE EXPRESSION

ANALYSIS

6.1 Related Work in Microarray Analysis

Microarrays are capable of profiling the gene expression patterns of tens of thousands of
genes in a single experiment. One of the key challenges of microarray studies is to derive
biological insights from the unprecedented quantities of data on gene expression patterns.
Partitioning genes into closely related groups across time with clustering techniques and
classification of the patients based on the selected gene signatures have become two main
tracks of practically all analyses of microarray data in the past decade [Quackenbush,
2001; Hand and Heard, 2005; Segal et al., 2005; Tjaden, 2006; Qin, 2006; Sha et al.,
2006]. Statistical modeling and inference problems with sample sizes substantially
smaller than the number of available features/genes are challenging, which is known as
the “large p small n problem”. Moreover, exploiting information redundancy from highly
correlated genes/features may potentially reduce the efforts in terms of time and cost for
genetic studies in human genetic research. The two fundamental questions and challenges
of the high dimensional gene data are how many genes is enough to provide good
prediction performance of disease status and how to determine the optimal final gene set

that are best for predictions and classifications.
To address the “curse of dimensionality” problem, generally, such efforts can be grouped
into three categories: filtering, wrapper, and embedded methods. Filtering methods select

feature subsets independently from the learning classifiers and do not incorporate
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learning [Newton et al., 2001; Long et al., 2001; Bo and Jonassen, 2002; Yu and Chen,
2005]. A weakness of filtering methods is that they only consider the individual features
in isolation and ignore the possible interaction among them. Yet, the combination of
these features may have a combined effect that does not necessarily follow from the
individual performances of features in the group [Pavlidis and Noble, 2001]. One of the
consequences of filtering methods is that we may end up with many highly correlated
features/genes with highly redundant information that worsens the classification and
prediction performance. If there is a limit on the number of features to be chosen, we may

not be able to include all informative features.

To address this problem in filtering methods, wrapper methods wrap around a particular
learning algorithm that can assess the selected feature subsets in terms of the estimated
classification errors and then build the final classifier [Inza et al., 2002]. Wrapper
methods use a learning machine to measure the quality of subsets of features. One of the
recent well-known wrapper methods for feature/gene selection is Support Vector
Machine Recursive Feature Elimination, which refines the optimum feature set by using
Support Vector Machine [Guyon et al., 2002]. The idea of SVMRFE is that the
orientation of the separating hyper-plane found by the SVM can be used to select
informative features: if the plane is orthogonal to a particular feature dimension, then that

feature is informative, and vice versa.

Wrapper methods can notably reduce the number of features and significantly improve

the classification accuracy [Monari and Dreyfus, 2000; Rivals and Personnaz, 2003].
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However, wrapper methods have the drawback of high computational cost. With much
better computational efficiency and similar performance to wrapper methods, a relatively
new class of approaches for feature selection called “embedded methods” has become
available in the literature. Embedded methods process feature selection simultaneously
with the learning classifier, therefore they can incorporate knowledge about the structure
of the classification. LASSO proposed by Tibshirani [Tishirani, 1996, 1997]; logic
regression with the regularized Laplacian prior [Krishanpuram et al., 2005]; and
Bayesian regularized neural network with automatic relevance determination [Liang and

Kelemen, 2005] are examples of embedded techniques.

Combining the sequential forward selection (SFS) and sequential floating forward
selection (SFFS) with LS (Least Squares) Bound measure, Zhou and Mao proposed SFS-
LS bound and SFFS-LS bound algorithms for optimal gene selection [Zhou and Mao,
2005]. To improve the classification of microarray gene expression data, another two
gene selection methods were proposed, one is leave-one-out calculation sequential
forward selection (LOOCSFS) algorithm, and the other is the gradient based leave-one-
out gene selection (GLGS) algorithm [Tang et al., 2006]. Recently, Diaz-Uriarte and de
Andres presented a new method for gene selection that uses random forest [Diaz-Uriarte
and de Andres, 200]. The main advantage of this method is that it returns very small sets
of genes that retain a high predictive accuracy. The algorithms are publicized in the R

package of varSelRF.
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In this chapter, a scheme of Recursive Feature Addition (RFA) is presented to deal with
redundancy issues and to improve the classification accuracy [Liu and Sung, 2006]. The
recursive procedure is based on the supervised learning with selected classifier and the
statistical similarity measures between the chosen genes and the candidates. We compare
RFA with above SVMRFE, LOOCSFS, GLGS, SFS-LSbound, SFFS-LSbound, and T-
test using six benchmark microarray gene expression datasets. Moreover, we propose a
new algorithm, called Lagging Prediction Peephole Optimization to choose the final
optimal feature/gene set for improve the classification. We compared our LPPO to
random strategy under the best training classification and also LPPO with RFA to the

popular gene selection method with the use of RF using six benchmark datasets.

6.2 Recursive Feature Addition for Gene Selection

6.2.1 Supervised Recursive Learning
The method of recursive feature addition is based on supervised learning and statistical
similarity measures between the chosen genes and the candidates. This new approach is

an embedded method and is presented as follows:

1. Each individual gene is selected with supervised learning, and the gene with the
highest classification accuracy is chosen as the most important feature, and the first
element of the feature set. If multiple genes achieve the same highest classification

accuracy, the lowest p-value measured by test-statistics (e.g., score test), is the target of
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the first element. At this point the chosen feature set, G,, consists of the first feature, g;,

which corresponds to feature dimension one.

2. The N+1I dimension feature set, Gy+; = {g7. &2 ,..., &v , gv+1} 1S produced by adding
gn+1to the N dimension feature set, Gy = {g;. g2 ,..., gv}. The choice of gy, ;1s described

as follows:

Add each gene g;(i #1 2, ..., N) outside of Gy to Gy and record the classification
accuracy of the feature set Gy + {g;}. The g. (g. ¢ Gn) corresponding to the highest
classification accuracy is marked and put into the set of candidates, C. Generally, the set
of candidates consists of multiple genes because of the high dimension of microarray data,

but only one gene in C will be chosen.

6.2.2 Candidate Feature Addition

To obtain a more informative and least redundant set, two strategies are designed for
choosing gn+; by measuring the statistical similarity between the chosen genes and
candidates. Here we apply Pearson’s correlation coefficient [Tan et al., 2005] between
the chosen gene g, (g, € Gy, n = 1, 2,..., N) and the candidate g. (g. € C,c=1,2 ... m;

m 1s the number of the elements in C) to measure the similarity.

In the first strategy, the Sum of the square of the Correlation (SC) is calculated to

measure the similarity and is defined as follows:
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N
SC(go)= Y, cor’(ge gn), n=1,2.. N (6-1)

n=1

where, g. € C, g, € Gy.

The selection of gy, follows the qualification that the SC value is the minimum:

{gn+1| gv+1€ C N SC(gn+7)=min(SC(g.)).g.€ C} (6-2)

This strategy is called Minimum Sum of the square of the Correlation (MSC).

In the second strategy, the Maximum value of the square of the Correlation (MC) is
calculated as follows:
MC(g.) =max (cor’(ge, g») ), n=1,2,...,N. (6-3)

where, g. € C, g, € Gn.

The selection of gy, follows the criterion that the MC value is the minimum:
{gn+1 | gn+1€ C N MC(gn+)=min(MC(g.)),g. € C} (6-4)
This strategy is called Minimum of Maximum value of the square of the Correlation

(MMO).

In the methods mentioned above, a feature is recursively added to the chosen feature set
based on supervised learning and the similarity measures. With the use of a classifier in
supervised learning, we call the first strategy Classifier-MSC and the second one
Classifier-MMC. For example, if the classifier for supervised learning is Naive Bayes
Classifier (NBC), we call the two new strategies NBC-MSC and NBC-MMC,

respectively.
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6.2.3 Lagging Prediction Peephole Optimization

Generally, we want to find a subset of features/genes that yields the best classification
and prediction performance with the optimal number of genes. The optimization of the
feature set in microarray gene expression is highly complicated because of the
characterization of the small sample size. Either applying different gene selections to the
same training samples or applying the same gene selection to different training samples
or applying different learning classifiers to the same training samples will produce
different optimization of the feature set. Pochet et al. presented a method of determining
the optimal number of genes by means of a cross-validation procedure. “In each LOO-
CV iteration (number of iterations equals the sample size), one sample is left out of the
data, a classification model is trained on the rest of the data and this model is then
evaluated on the left out data point” (Pochet et al., 2004). Actually, this procedure by
means of LOO-CV utilizes the testing samples in addition to the training samples since
the iteration covers all the samples. In the view of my point, the optimization of the

number of genes should be just based on the training samples.

The gene selection of RFA is based on supervised learning, with the recursive addition of
the next gene; the training classification will increase and finally reach the best
classification, and then may maintain it. After that, the training classification may
decrease. Normally, all strategies for determining the feature set should be based on the
best training classification. If there are multiple best training classifications, just

randomly choose one. We call this scheme random strategy under the best training
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classification. However, in the recursive addition of the features, as training initially
reaches the highest accuracy, generally, the training model may not be optimal or robust
to the testing samples because of the difference of training samples and the testing
samples. In other words, the testing classification may not be the optimal and the best
classification model to the testing samples will lag in appearance (see Fig. 1). Based on

this consideration and observation, we propose the following algorithm of optimization.

1. Under feature dimension j, the training accuracy of the /™ experiment is (i, /).
Pick up the feature set Gy, corresponding to feature dimension &, which has the best
training accuracy in the trainings on the feature sets from G; to Gp, corresponding to the

feature dimensions from 1 to D. The set of G, is denoted as HR.

HR = {G;| 1 <vk <D, r(i,k) = max(r(i,j)), | <j<D} (6-5)

2. Generally, the best classification model to testing samples will lag in appearance
behind the initial best training model. We exclude the elements of HR that correspond to
the initial best training. The remaining elements of HR consist of the candidate set HRC

for optimization.
3. Each element of HRC is associated with the best training accuracy. We set a

peephole on each element and choose the element associated with the best mean value of

the training to the whole peephole, described as follows:
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a. For each element G, € HRC, the peephole on Gy with the length 2/+1 covers the
feature sets Gy, Gir+15---, Giy ..., Giir1, Giyi, corresponding to the training accuracy (i,
k-0), r(i, k-1+1), ..., r(i, k), ...,7(i, k+I-1), (i, k+[). The mean training value of the

peephole is denoted as mp_r(i,k).

mp _r(i,k)= (/A2 +1)Xr i r(i,m) (6-6)

The feature set located on the center of the peephole, which has the best classification

of mp_r is chosen as the optimal one.

b. If there are multiple peepholes with the highest classification mp_r, then we apply
random forest to these peepholes and check the mean values of the Out-of-Bag (OOB)
error rates [Breiman, 2001; Liaw and Wiener, 2002; Diaz-Uriarte and de Andres, 2006].
The feature sets Gi; ,Gii1 5.-., Gk ,..., Grir1, Gy correspond to the OOB errors,
oob_e(i,k-), oob_e(ik-1+1),..., oob_e(i,k), ..., oob_e(i,k+I-1), oob e(ik+I). The mean

value of the OOB errors is denoted as mp _oob_e(i k)

mp oob _e(i,k)=0/21+1)YX" " oob e(i,m) (6-7)

Pick up the feature set associated with the minimum of mp _oob_e as the optimal one.

c. If there are multiple peepholes corresponding to the best mp r and minimum

mp_oob_e, then set/ +1 — [, and repeat ‘a’ to ‘c’.
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We call this strategy of optimization of RFA as Lagging Prediction Peephole

Optimization (LPPO). Fig. 6-1 gives the demonstration of the LPPO on the prostate data

set [Singh et al., 2002].

Oemonstration of LPPO on Prostate
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Fig. 6-1 Demonstration of Lagging Prediction Peephole Optimization algorithm on the

Prostate data set.

6.3 Evaluation of Gene Selection
Under feature dimension j, the training accuracy of the i"™ experiment is (i, j), and the
testing accuracy of the i experiment is s(i, j), i=1, 2, ..., I, j=1, 2, ..., J; where I is the

number of experiments and J is the number of chosen features. The following statistics

are measured to evaluate the performance of the gene selections.
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(1) The average training accuracy in each feature dimension
The average training accuracy of the experiments under the feature dimension j, r(j),

j=1,2, ..., Jis calculated as follows:

ORI (-8)

(2) The average testing accuracy in each feature dimension
The average testing accuracy of the experiments under the feature dimension j, s(j),

j=1,2, ..., J, is calculated as follows:

s(j)= %Zf_ls(i,j) (6-9)

(3) The average testing accuracy, ms_hr(i), of the i experiment under the condition
that the associated/corresponding training accuracy is the highest, which is defined as
follows:

ms_hni) =meas(i,m))| r(i,m) = maxe(i, j)),vm, j € {1,2,..J} (6-10)

Actually, the average testing accuracy ms_hr(i) is the expected value of the random

strategy under the best training classification of the i" experiment.

(4) The highest testing accuracy, is_hr(i), of the i" experiment under the condition
that the associated/corresponding training accuracy is the highest, which is defined as

follows:

hs _hr(i) = max(s(i,m)) | r(i,m) = max((i, j)),Vm, j € {1,2,..J} (6-11)
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6.4 Experiments

6.4.1 Data Sets
The following six benchmark microarray gene expression datasets were tested in our
experiments. Data sources which are not specified are available at:

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

1) The LEUKEMIA data set, which consists of two types of acute leukemia: 48 acute
lymphoblastic leukemia (ALL) samples and 25 acute myeloblastic leukemia (AML)

samples, over 7129 probes from 6817 human genes [Golub et al., 1999].

2) The LYMPHOMA data set, which consists of 58 diffuse large B-cell lymphoma
(DLBCL) samples and 19 follicular lymphoma (FL) samples [Shipp et al., 2002]. The
data  file, lymphoma 8 Ibc fscc2 rn.res, and the class label file,

lymphoma_8 lbc fscc2.cls were used in our experiments for identifying DLBCL and FL.

3) The PROSTATE data set contains 52 prostate tumor samples and 50 non-tumor

prostate samples [Singh et al., 2002].

4) The COLON cancer data set contains 62 samples collected from colon-cancer patients.

Among them, 40 tumor biopsies are from tumors and 22 normal biopsies are from

healthy parts of the colons of the same patients. 2000 genes were selected based on the
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confidence in the measured expression levels [Alon et al., 1999]. The data source is

available at http://microarray.princeton.edu/oncology/affydata/index.html.

5) The Central Nervous System (CNS) embryonal tumor data set that was originally
studied by [Pomeroy et al., 2002]. It contains 60 patient samples. Among them 21 are
survivors who are alive after treatment and 39 are failures who succumbed to their

diseases. There are 7129 genes.

6) The Breast cancer data set studied by [Van et al., 2002]. This data set contains 97
patient samples, 46 patients are relapse who had developed distance metastases within 5
years, and 51 patients are non-relapse who remained healthy for at least 5 years from the
distance after their initial diagnosis. This data source is available at:

http://www.rii.com/publications/2002/vantveer.htm.

6.4.2 Experimental Setup
Our experiments are designed as follows:
1. The data sets are first divided into training samples and testing samples randomly. The

ratio of training samples to testing samples is 1:1 in each class.

2. Recursive Feature Additions with Naive Bayes Classifier (NBC) and Nearest Mean
Scaled Classifier (NMSC) for gene selection (NBC-MSC, NBC-MMC, NMSC-MSC, and
NMSC-MMC) were applied to the training samples for gene selection. Different feature

sets of the gene expression data are produced under feature dimensions 1 to 100. We
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compared the above proposed methods to several recently developed and published gene
selection methods: LOOCSFS, GLGS, SVMRFE, SFFS-LS bound, SFS-LS bound, and

also T-TEST.

3. The learning classifiers including NBC, NMSC, SVM, and Random Forest [Breiman,
2001; Liaw and Wiener, 2002] were applied to the testing samples to compare different

gene selections.

4. The experiments were performed 20 runs and the average testing accuracies were

compared to evaluate performance.

6.5 Results

6.5.1 Average Training Accuracy

Fig.6-2 lists the average training accuracies on the six data sets with classifiers NMSC,
SVM, NBC, and RF. The performances of NBC-MMC, NMSC-MMC, NBC-MSC, and
NMSC-MSC are close to one another. Therefore, to clearly demonstrate the other seven
gene selections, the average training accuracies of the gene selections NBC-MMC,
NMSC-MMC, and NBC-MSC are not presented due to their similar performance in order.
Fig.6-2 indicates that on the average with the use of learning classifiers NMSC and NBC,
the average training accuracy of NMSC-MSC is the best, followed by GLGS, SVM-RFE,
LOOCSFS, SFS-LSbound, SFFS-LSbound, and T-TEST; with the use of learning

classifiers SVM and RF, there is no obvious difference in different gene selections.
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Fig. 6-2 The average training accuracies of different gene selections for six benchmark
data sets for four classifiers (NBC, NMSC, SVM, RF). X-axis and y-axis give the feature
dimension and testing accuracy values, respectively.
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6.5.2 Average Testing Accuracy

Fig. 6-3 lists the average testing accuracies of the gene selections with classifiers NMSC,
SVM, NBC, and RF. Again, the performances of NBC-MMC, NMSC-MMC, NBC-MSC,
and NMSC-MSC are close to one another therefore, the average testing accuracies of the
gene selections NBC-MMC, NMSC-MMC, and NBC-MSC are not listed in the figures.
Fig 6-3 indicates that, the average testing accuracy of NMSC-MSC is the best, followed
by GLGS, LOOCSFS, and SVM-RFE. SFS-LS bound, SFFS-LS bound, and T-TEST
didn’t perform well. Fig. 6-3 also manifests that, spanning several data sets and learning
classifiers, the performance and stabilization of the gene selection of NMSC-MSC is the

best.

6.5.3 Testing Accuracy under the Best Training

Table 6-1 provides the mean values and standard errors of the testing accuracies ms_hr(i),
(i=1, 2, ...,20) and the highest testing accuracies hs_hr(i), (i= 1, 2, ..., 20) under the
highest training classification, defined in (10) and (11), respectively. After applying each
classifier to each data set, the highest mean value of the ten gene selections is shaded. In
each data set, the highest mean value in the shade is in bold. Table 6-2 lists the statistics
of the highest mean value associated with gene selections. Tables 6-1 and 6-2 show that,
the best gene selection is NBC-MSC, followed by NMSC-MSC, NMSC-MMC, NBC-
MMC, LOOCSFS, GLGS, and SVMRFE. SFFS-LSBOUND and SFS-LSBOUND

performed poorly. On the average, T-TEST was the worst.
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Fig. 6-3 The average testing accuracies of different gene selections for six benchmark
data sets for four classifiers (NBC, NMSC, SVM, RF). X-axis and y-axis give the feature

dimension and testing accuracy values, respectively.
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Table 6-1 Mean values and standard errors of hs hr and ms hr. In applying each
classifier to each data set, the highest mean value of the ten gene selections is shaded; in

each data set, the highest mean value in the shade is in bold.

MEAN(HS_HR) + STD(HS_HR), %

MEAN(MS_HR) = STD(MS_HR), %

DATA SET GENE
SELECTION NMSC SVM NBC RF NMSC SVM NBC RF
NBC-MMC - 99.4+12 983+23 984+14 | 981+14 934+28 943+28 956+23
NMSC-MMC 99.1+13 984+1.9  986+19 | 97.9+12  93.3+28  952+28 0957+3.4
NBC-MSC 99.4+11 99.1+13 98.4+1.7 946+27 96.0+25
NMSC-MSC 99.7 £+ 0.9 986+1.7 987+17 | 97.7+14  948%25  946+34 957%3.1
Leukemia GLGS 99.6+1.0 98.9+1.7 986+17  986+1.7 | 97.8+17  925+3.8 95.0 £ 2.5
LOOCSFS 97.1+33 98.0+15 97.7+1.9 939+35  948+31 94527
SVMRFE 98.0+2.0 954+39 973+21  98.0+20 | 957+28  925+52  925+3.0 93.4%19
SFFS-.LSBOUND | 97.1+25 97.4+38 963+41  97.1+28 | 93.8+43  929+38  002+58 926+4.1
SFS-LSBOUND 97.1+28 97.0+30 964+36  97.3+30 | 946+35 93.6+38 912+50 93.0%51
T.TEST 948+35 954+45 933+69 968+29 | 922+39  90.7+48 90.1+65 935+3.6
NBC-MMC 98.1+2.6 973+26  964+28 | 96.2+43  93.8+28 91.7+39 0916%37
NMSC-MMC 99.2+1.2 988+16 97.9+26  965+3.7 | 96.9+19  93.0+28  93.1+3.3 923+40
NBC-MSC 99.4+11 98.4+18 97.9+26  96.8+3.3 93.1+35  927+35 92.6+4.1
NMSC-MSC 98.8+1.6 97.2+1.9
Lymphoma GLGS 986+1.8 982+19 97.0+26  96.9+23 | 965+21  925+38  923+3.6 91.7+29
LOOCSFS 87.0+7.2 93.0%53 87.3+51  929+48 | 858+6.8 87.8+54  851+45 882+4.3
SVMRFE 99.2+15 965+39 97.2+34  966+31 | 965+2.0 91.8+43  93.1+40 93.3%40
SFFS-.LSBOUND | 88.7+6.1 951+33 840+49  922+47 | 87.0+57  882+49 80.6+3.9 86848
SFS-LSBOUND 87.7+6.1 96.1+35 86.1+35 91.8+42 | 864+56  91.1+37  827+34 86148
T.TEST 860+57 944+30 865+7.0 91.7+52 | 843+58 87.7+33 839%61 87.2+45
NBC-MMC 963+24 958+25 04.8+2.6 942+28  916+23  904+27 921%22
NMSC-MMC 956+2.3 959+25 937+28  953+23 | 927+23  914+28  90.7+31 91.3+23
NBC-MSC 96.4+20  96.6+1.9 925+23  91.0+23
NMSC-MSC 945+2.0 958+18 | 945+24 92.0+1.9
GLGS 936+3.0 96122 904+39  947+20 | 915%27  91.7+26  875%34 90.0+25
Prostate LOOCSFS 88.4+52 949+29 90.7+53 952+26 | 87.0+4.7 91.1+3.4 88.0+45 923+23
SVMRFE 941+34 923%27 928+43  957%26 | 924+33  867+35  90.0+4.0
SFFS-.LSBOUND | 90.4+3.2 93.4+28 862+58  902+32 | 889+31  860+32 844+51 86.1+4.0
SFS-LSBOUND 89.7+49 927+40 873+54  924+35 | 883+51  87.2+50 851%54 89.0+3.9
TTEST 914+41 925+21 91.7+28  940+3.0 | 89.7+37 87.1+32  89.0+43 91.0+3.1
NBC-MMC 88.7 £5.5 865+40  89.7+49 | 845+52  809+60  78.2+49 82555
NMSC-MMC 87.4+53  90.0+40 | 849+7.1 80.8+59 83.3+54
NBC-MSC 890.4+4.3 86.9+4.6 90.0 £4.0 80.3+5.6  82.1+48
NMSC-MSC 91.0+53 87.6+47 881+33  90.0+4.4 80.9+55 83.9+45
GLGS 87.3+6.2 87.3t46 85248 837+6.6 812+55 77.6+58 83.0%45
Colon LOOCSFS 850+53 863+39 81.6+58  868%53 | 82.2+46  79.3+52  767+69 80.3%53
SVMRFE 86.0+6.7 86.8+48 821+74  863+55 | 81.8+72  807+47 77.7+75 80.3+6.0
SFFS-.LSBOUND | 85.0+4.8 87.1+44 727+70  826+6.0 | 824+44  762+63 695+83 746+68
SFS-LSBOUND 853+4.6 858+53 768+7.1  86.0+41 | 833+47  77.7+6.4  725%62 T77.6+45
TTEST 774+104 855+40 763+83  815+72 | 749z 753+57  728+82 751%78
10.8
NBC-MMC 91.8+6.1 77.8+5.2 86.7+6.0  824+47 67341
NMSC-MMC 90.0+6.4 922+57 78.0+53  827+52 | 828+6.8  821+56 67.5+55 73.5+4.9
NBC-MSC 920+44 8l1+41  855+4.9 702+3.7 759%53
NMSC-MSC 928+4.0 91.6+4.9 849+41 | 856+43  814+62  700+45 744142
CNS GLGS 847+33 91.1+54 78855  842+50 | 824+36  81.3+48  67.9+45 75343
LOOCSFS 713+98 850+59 79.1+7.7  832+44 | 69.3+80  77.6+45 75.3+5.1
SVMRFE 832+89 851%84 77.1+68  835+43 | 77.0£80  750+88  657%7.2 73.3+49
SFFS-.LSBOUND | 68.1+6.7 71.9+7.1 67.6+7.7  762+45 | 653+6.3 594+75 613+6.1 66.9+4.8
SFS-LSBOUND 67.8+6.2 724+49 69.8+82  762+50 | 657+54  607+51  637+7.2 68445
TTEST 675+8.8 77.4+6.4 67.0+71  755+59 | 63.4+7.6 67.3+58 60.9+6.8 67.8+4.9
NBC-MMC 825+6.0 829+35 841+30 84.1+36 | 81.3+57  732+38 784+34 78.4+38
NMSC-MMC 82.0+33 824+43  837+47 | 804+40  720+38 784+43 77.0+43
NBC-MSC 83.4+5.8 79.1+3.0
NMSC-MSC 828+44 824+38 841+40  839:40 | 796+40  73.7:3.9 77.7+4.0
Breast GLGS 80.8+3.7 79.3+45 8l4+41  837+46 | 792+39  707+46  77.8+3.7 T77.0+42
LOOCSFS 717+65 77.3+52 78.0+58  80.3+3.8 | 704+65  692+47  747+51 74342
SVMRFE 743+71 783+52 772+53  80.4+41 | 732+6.6  721+58  739+45 73.9+37
SFFS-.LSBOUND | 76.2+52  789+28 769+7.3  815+53 | 750+53  67.8+33 752+6.8 756+4.9
SFS-LSBOUND 775+56 789+42 79.8+52  81.3+52 | 758+55  68.0+47  769+6.3 754152
T.TEST 711+53 77.6%52 726+63  763+57 | 69.3+53  69.9+36 705+58 71.1+58
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Table 6-2 Numbers of occurrences of the highest mean values in Table 6-1

Gene
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# of shade
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Table 6-3 Comparison of LPPO and Random Strategy

Data Gene MEAN(S_LPPO - MS _HR), %
Set Selection NMSC SVM NBC RF
NBC-MMC 0.8 0.1 23 14
: NMSC-MMC 1.0 0.9 18 1.6
Leukemia NBC-MSC 0.2 03 19 1.1
NMSC-MSC 16 07 25 13
NBC-MMC 0.6 0.1 1.0 04
NMSC-MMC 13 0.4 14 12
Lymphoma NBC-MSC 0.4 12 15 14
NMSC-MSC 0.9 0.1 16 0.6
NBC-MMC 02 0.1 0.0 05
NMSC-MMC 0.9 0.4 0.9 1.1
Prostate NBC-MSC 03 0.7 0.6 18
NMSC-MSC 04 08 0.2 1.0
NBC-MMC 03 02 11 04
NMSC-MMC 0.6 0.0 0.1 03
Colon NBC-MSC 0.2 0.5 2.6 13
NMSC-MSC 0.9 03 22 0.5
NBC-MMC 21 18 22 3.1
NMSC-MMC 0.8 1.0 0.4 16
CNS NBC-MSC 12 0.0 0.6 0.6
NMSC-MSC 1.9 22 24 13
NBC-MMC 02 13 0.5 15
Breast NMSC-MMC 0.6 3.2 -1.2 0.9
Cancer NBC-MSC 0.0 17 1.6 0.6
NMSC-MSC 17 13 1.1 1.0
Average 0.8 0.7 0.4 0.9




6.5.4 Comparison of LPPO and Random Strategy

Table 6-3 lists the mean values of the differences between the testing values (denoted as
S_LPPO) by applying NMSC, SVM, NBC, and RF to LPPO and ms_hr. The table shows
that, on the average, LPPO is superior to the random strategy under the best training
acuuracies. In summary, spanning the six benchmark data sets, in comparison with ms_hr,
LPPO improves the testing accuracy by an average of 0.8% for NMSC, 0.7% for SVM,

0.4% for NBC, and 0.9% for RF.

6.5.5 Comparison of LPPO and varSelRF

Fig. 6-4 shows the boxplots of the testing values of the feature sets LPPO with RFA and
varSelRF with RF. The gene selections are NBC-MMC, NMSC-MMC, NBC-MSC,
NMSC-MSC, and varSelRF from left to right in each subfigure. Fig. 6-4 shows that the
testing accuracy values by applying RF to the feature set of LPPO on RFA are higher

than the values by applying RF to the feature set from the gene selection of varSelRF.

6.6 CONCLUSION

This chapter presents a new gene selection method: Recursive Feature Addition for
improving classifications of microarray gene expression data. This method takes
advantage of the highest training accuracy and adds the subsequent gene recursively
based on the similarity measures between the chosen genes and the candidates in order to
minimize the redundancy of the genes within the selected subset of genes. In order to
have a fair comparison across all methods, we addressed the issue of optimizing the

number of genes for each of the methods. We proposed the Lagging Prediction Peephole
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Optimization algorithm for optimizing the number of genes and to choose the final

feature/gene set. We compared RFA to other gene selection methods using six popular

benchmark datasets. Results show that, RFA outperforms the other recently developed

methods with the use of different classifiers. Results also show that, on the average, the

testing accuracy with the feature set chosen by LPPO is superior to the random strategy

under the best training accuracies. Regarding the classification accuracy, LPPO also

outperforms the popular gene selection method varSelRF.
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Fig. 6-4 Boxplots of testing accuracies of the LPPO with RFA VS varSelRF for six data

sets. Random Forest is the testing classifier.
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CHAPTER 7: TAGGING SNP SELECTION FOR

GENOME-WIDE DISEASE CLASSIFICATION

7.1 Introduction

SNPs promise to significantly advance our ability to understand and treat human disease.
Comprehensive evaluation of common genetic variations through association of SNP
structure with common complex diseases in the genome-wide scale is currently a hot area
in human genome research. However, due to the tremendous number of candidate SNPs,
there are a clear need to expedite genotyping by selecting and considering only a subset of
all SNPs. This process is known as tagging SNP selection. Exploiting information
redundancy due to associations between single nucleotide polymorphism (SNP) markers
potentially reduces the efforts in terms of time and cost for these studies. One of the
fundamental questions in SNP-disease association study is how many SNPs is enough to
provide good prediction performance of disease status. This chapter presents a new
feature selection method named Supervised Recursive Feature Addition (SRFA). This
method combines supervised learning and statistical measures for the chosen candidate
features/SNPs to deal with the redundancy information so that it can improve the
classification in association studies. Additionally, this chapter also describes a Support
Vector based lowest weight and lowest correlation Recursive Feature Addition (SVFRA)
scheme in SNP-diseases association analysis. We implemented the proposed SRFA with
different statistical learning classifiers for both SNP selections and disease classifications,
and then applied them to two complex disease data sets. Results show that on the

average, designed SRFA outperforms the well-known method of Support Vector
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Machine Recursive Feature Elimination and logic regression based SNP selections for

disease classification in genetic association study.

7.2 Related Work

Correlating variations in DNA sequence with phenotypic differences has been one of the
grand challenges in biomedical research. Substantial efforts have been made to obtain all
common genetic variations in humans, including single nucleotide polymorphisms
(SNPs), deletions and insertions [Brookes, 1999]. The HapMap Project has collected
genotypes of millions of SNPs from populations with ancestry from Africa, Asia and
Europe and makes this information freely available in the public domain [The
International HapMap Consortium, 2003, 2004, 2005]. Yet, one cannot perform a whole
genome-wide association study directly based on the genotypes or allele frequencies of
individual markers due to the relative low power of each SNP and the huge number of
total SNPs. While millions of SNPs have been identified, with an estimated two common
missense variants per gene, there is a great need, conceptually as well as computationally,
to develop advanced robust algorithms and analytical methods for characterizing genetic
variations that are non-redundant and identify the target SNPs that are most likely to

affect the phenotypes and ultimately contribute to disease development.

Exploiting information redundancy due to associations between SNP markers potentially
reduces the efforts in terms of time and cost for genetic association studies [Risch, 2000].
However, the efficacy of searching for optimal set of SNPs has not been as successful as

expected in theory. One primary cause is the high dimensionality with highly correlated
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features/SNPs that can hinder the power of the identification of small to moderate genetic
effects in complex diseases. The need to incorporate covariates of other environmental
risk factors as effect modifiers or confounders further worsens “the curse of
dimensionality problem” in mapping genes for complex diseases [Cardon and Bell,
2001]. One of the fundamental questions for searching for set of SNPs in genetic
association study is how many SNPs is enough to provide good prediction performance

of disease status.

Therefore, feature selection for massive genomic data in high dimension has become a
main task to be tackled with statistical and computational efforts recently. Specifically, in
genome-wide disease association studies, various models and algorithms have been
proposed for selecting a subset of SNPs [Hampe et al., 2003; Sebastiani et al., 2003;
Stram et al., 2003; Carlson et al., 2004; Halldorsson et al., 2004; Lin and Altman, 2004;
Goplakrishnan and Qin, 2006]. Linkage Disequilibrium based methods for selecting a
maximally informative set of SNPs for association analyses has been developed first
[Cores and Vapnik, 1995; Vapnik, 1995; Vapnik 1998; Witte and Fijal, 2001; Tan et al.,
2005]. Zhang and Jin introduced a tagSNPs criterion based on pair-wise Linkage
Disequilibrium (LD) and haplotype 7> measure for case control association studies [Zhan
and Jin, 2003]. [Anderson and Novermbre, 2003] and [Mannila et al., 2003] proposed
finding haplotype block boundaries using minimum description length. The method
presented by [Beckmann et al., 2005] reflects the flexibility of Mantel statistics using
haplotype sharing to correlate temporal and spatial distributions of cancer in a

generalized regression approach for SNP selections and disease mapping purposes. The
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tagSNPs for unphased genotypes is designed based on multiple linear regressions [He and
Zelikovsky, 2006]. Other test statistic approaches such as scan statistic by [Levin et al.,
2005]; score statistic by [Schaid ef al., 2002], weighted-average statistic [Song and
Elston, 2006] for disease mapping in case-control studies were proposed for SNP

selection in genetic association studies.

Recently, Schwender and Ickstadt demonstrated logic regression [Kooperberg et al.,
2001] based identification of SNP interactions for the disease status in case-control study
and proposed two measures for quantifying the importance of feature interactions for
classification. In comparison with some well-known classification methods of CART
[Breiman et al., 1984], Random Forests [Breiman, 2001] and other regression procedures
[Witte and Fijal, 2001], logic regression has shown a good classification performance

when applied to SNP data [Schwender and Ickstadt, 2006].

In this chapter, a new feature selection method named Supervised Recursive Feature
Addition (SRFA) is presented. This method combines supervised learning and statistical
measures for the chosen candidate features/SNPs in order to deal with the redundancy
information so that it can improve the classification and prediction performance. We
implemented our SRFA with different statistical learning classifiers for both SNP
selections and disease classifications and compared their performances to popular
classification models, such as conditional logistic regression, Logic regression, and
Support Vector Machine Recursive Feature Elimination (SVMRFE). Additionally, we

propose a support vector based lowest weight and lowest correlation feature selection
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scheme for SNP-diseases association analysis. We applied these proposed approaches to
two complex SNP-disease data sets: Myocardial Infarction Case & Control (MICC) data
set and a subset of The North American Rheumatoid Arthritis Consortium (NARAC) data
to evaluate and to demonstrate our proposed SRFA with different supervised learning

classifiers for both SNP selections and disease classifications.

7.3 Supervised Tagging SNP Selection

7.3.1 Supervised Recursive Feature Addition Algorithm for SNP Selection
SRFA combines supervised learning and statistical similarity measures between the

chosen features and the candidates and is presented as follows:

Step 1: Each individual feature is ranked from the highest classification accuracy to the

lowest classification accuracy with the use of a supervised learning classifier.

Step 2: The feature with the highest classification accuracy is chosen as the first feature.
If multiple features achieve the same highest classification accuracy, the one with the
lowest p-value measured by score test-statistics is chosen as the first element. At this
point the chosen feature set, G;, consists of the first feature, g;, which corresponds to

feature dimension one.
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Step 3: The N+/ — dimensional feature set, Gy+; = {g/. g2 ,..., v, gv+1} 1s produced by
adding gy+; to the previous N-dimensional feature set, Gy = {g;, g2 ,..., gv}. n+1 1S

chosen as follows:

Temporarily add each feature g;(i # 1, 2, ..., N) outside of Gy to Gy: The classification
accuracies of each feature set Gy + {g;} is recorded, the g. with the highest classification
accuracy is marked and put into the set of candidates: C. Generally, the set of candidates
consists of many features, but only one feature will be selected to be included in the
feature set next as gy:+;. We choose the (N+1)™ feature: gn+; from candidate set C
according to statistical similarity between the chosen features and candidates. We call
this step Candidate Feature Addition. The goal is to obtain a most informative and least
redundant feature set. The statistical similarity measure is based on the Spearman
Correlation Coefficient (for categorical features/SNPs) between the chosen feature g, (g,
€ Gy, n=1,2,..., N) and the candidate g. (g. € C, c= 1, 2 ... m; m is the number of
elements in C). Spearman's rank correlation coefficient, often denoted by the Greek letter
p (tho), is a non-parametric measure of correlation — that is, it assesses how well an
arbitrary monotonic function could describe the relationship between two variables,
without making any assumptions about the frequency distribution of the variables. Unlike
the Pearson product-moment correlation coefficient, it does not require the assumption
that the relationship between the variables is linear, nor does it require the variables to be

measured on interval scales; it can be used for variables measured at the ordinal level.
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In principle, p is simply a special case of the Pearson product-moment coefficient in
which the data are converted to ranks before calculating the coefficient. In practice,
however, a simpler procedure is normally used to calculate p. The raw scores are
converted to ranks, and the differences D between the ranks of each observation on the

two variables are calculated. p is then given by:

6) D’
p=1. 2D (-1
NN -1)
where, D = the difference between the ranks of corresponding values of X and Y, and N =

the number of pairs of values.

The Sum of the square of the Correlation (SC) is calculated to measure the similarity and

is defined as follows:

SCg) =Y. p(gugn) n=12..N (7-2)

n=1

where g. € C, g, € Gy.

The selection of gy, follows the qualification that the SC value in (7-2) is the minimum:

{gn+1| gv+1€ C N SC(gy+)=min(SC(g.)).g. € C} (7-3)

This strategy is called Minimum SC (MSC).
Step 4: A feature is recursively added to the chosen feature set from steps 1-3 with

supervised learning and the similarity measures until classification accuracy stops to

increase.
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Our SRFA based MSC is denoted as classifier-MSC, for example, if the classifier is
Naive Bayes Classifier (NBC), we call the feature selection NBC-MSC. SRFA here can
not only provide us the feature selection procedure but also it could be directly used for
further classification and prediction purposes by using learning classifiers that may differ

from feature selection classifiers.

7.3.2 Support Vector Based Recursive Feature Addition Algorithms

Support Vector Machines (SVMs) [Cores and Vapnik, 1995; Vapnik, 1995] have been
widely applied to pattern classification problems and non-linear regressions. The basic
idea of the SVM algorithm is to find an optimal hyper-plane that can maximize the
margin between two groups. The vectors that are closest to the optimal hyper-plane are
called support vectors. [Guyon et al., 2002] proposed a feature selection, called Support
Vector Machine Recursive Feature Elimination (SVMRFE). Based on the SVMRFE and
our SRFA discussed earlier, we propose a Support Vector based lowest weight (or
maximum margin width) and lowest correlation feature addition scheme, called Support

Vector based Recursive Feature Addition (SVRFA) described as follows:

1. Train an SVM on each individual feature in the data set given an SVM with weight

vector w:zkakykxk

2. Rank features according to criterion ¢ for feature i: ¢; = (w,-)z. The features
corresponding to the lowest ¢ are picked up as candidates. The candidate with the highest

statistical significance is the first element of the feature set. At this point the chosen
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feature set, G,, consists of the first feature, g;, which corresponds to feature dimension

one.

3. The (N+1)" dimensional feature set, Gy+; = {g/. €2 »..., &v » gv+1} is produced by
adding gy+;to the N dimensional feature set, Gy = {g;, g2 ,..., gv}. The choice of gy, s

described as follows:

Temporarily add each feature g; (i # 1, 2, ..., N) outside of Gy to Gy, train an SVM on
feature set Gy + {g;}, update ¢, and calculate the measures after introducing g; as follows:
SWg)= Y e, =" w,? (7-4)

MW(g;) = max(c,)=max(w, ), k=1,2..N+1 (7-5)
k k

Here we have two strategies to choose candidates as gy+;, corresponding to measures SW
and MW, respectively. The candidate set is denoted as C. The first strategy is to pick up

the feature with the minimum SW into C; and the second one is according to the

minimum MW.
gie C| SW(g)=min(SW) (7-6)
gie C| MW(g)) = min(MW) (7-7)

Whether set C consists of multiple candidates or a single candidate, only one feature will
be chosen as gy+;. We call the support vector based recursive feature addition according

to Minimum SW in (7-6) and with Minimum SC in (7-3) MSW-MSC. Similarly we call
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the support vector based feature addition according to Minimum MW in (7-7) and with

Minimum SC in (7-3) MMW-MSC.

7.4 Experiments and Results

7.4.1 Materials

Application I: The role of genes and environments in the link between important health
conditions: Periodontal Disease (PD) and Cardiovascular Disease (CVD). Cardiovascular
disease is the number one cause of death and disability in the western world. Almost 1
million Americans die of CVD each year, which adds up to 42% of all deaths. Numerous
clinical and epidemiological studies have shown a consistent association between PD and
CVD and the link between these two diseases may be the result of common
environmental exposures and potential genes that may regulate the individual response to
these exposures. The identification of SNPs that influence the risk of diseases through
interactions with other SNPs and environmental factors remains a statistical and

computational challenge.

Our Myocardial Infarction Case & Control (MICC) data set is a result of a population
based study. The sample included residents of Erie and Niagara counties in New York
State and all were in age group 35 to 69 years. There were 614 white male patients with
Myocardial Infarction matched with 614 control males (without CVD) by age (+/- 5 year)
and smoking habits; 206 white pre and postmenopausal females with MI matched with

412 control females (without CVD) by age (+/- 5 year), menopausal status, years since
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menopause (+/- 2 year), and smoking habits. Diabetics were excluded. The features in the
data set included 29 environmental variables, such as smoking status, menopausal status,
blood pressure, blood cholesterol, body mass index, drinking status, etc. and 2 protein
variables (ACHMN and CALMEA) that were known to be related to periodontal disease.
Selection of genetic variables was based on the well known Seattle web site
(http://pga.mbt.washington.edu/) using candidate approach, which included 31 SNPs in 9
genes as follows: IL 1 beta gene: rs1143634, rs16944, rs3917354, rs3917356; IL 6 gene:
rs2069825, rs1818879, rs1548216, rs1800795; MMP3: rs522616, rs595840, rs602128,
rs680753; TF: rs1324214, rs1361600, rs3354, rs391763. The original MICC data set
contained some missing data. In our experiments, we filtered out the missing data and the
associated observations. This data set was mainly used to evaluate the SNP-environment
and variable-disease associations, especially the effects of SNPs and environmental

variables to the disease.

Application 2: Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic
inflammation of the joints, the tissue around the joints, or other organs in the body. RA
affects more than two million people in the United States. 70 percent of people with RA
are women. While women are two to three times more likely to get RA, men tend to have
more severe symptoms. It afflicts people of all races equally. Onset usually occurs
between 30 and 50 years of age. Data for this analysis was provided as part of Genetics
Analysis Workshop 15. GAWI15 focused on genetic factors that predispose for
rheumatiod arthritis. The North American Rheumatoid Arthritis Consortium (NARAC),

lead by Peter Gregersen, has provided microsatellite and SNP scans, quantitative
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phenotypes, and clinical measures, with additional genotype data provided by Robert
Plenge and Ann Begovich. We studied the SNP case-control data named
“CHRI18SNP.dat” offered by NARAC. In the data file, a dense panel of 2300 SNPs was
genotyped by Illumina for an approximately 10 kb region of chromosome 18q. These
markers were individually genotyped on 460 cases and 460 controls. Controls were
recruited from a New York City population. The objective of this study is to identify
SNPs of chromosome 18 that are significantly associated with rheumatoid arthritis. The
significant SNPs identified here could be used as a starting point for biologists

developing genetic tests that indicate increased risk of developing rheumatoid arthritis.

7.4.2 Implementations and Comparison Studies

We implemented SRFA with various statistical learning classifiers (with different
complexity) proposed in section 2.1. The learning classifiers for feature selections were
Naive Bayes Classifier (NBC) [Pedro and Pazzani, 1997], Nearest Mean Scaled
Classifier (NMSC) [Heijden et al., 2004] and Dynamic Evolving Neuro-Fuzzy Inference
System (DENFIS) [Kasabov, 2002; Kasabov and Song, 2002]. We recorded them as
NBC-MSC, NMSC-MSC and DENFIS-MSC. Several classifiers including NBC, NMSC,
SVM, uncorrelated normal based quadratic Bayes classifier that was recorded as UDC **
were applied to the feature sets selected by the above SRFA in order to compare the
performance. Our goals are (i) to evaluate feature selection procedures and find the
number of features required for the best classification accuracy; (ii) to evaluate various
learning approaches; (iii) to investigate the redundancy issues in SNP data for improving

the classification performance.
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We also implemented and tested our SVRFA: MSW-MSC and MMW-MSC methods
proposed in section 2.2. For comparison purposes, other popular methods, such as
Support Vector Machine Recursive Feature Elimination (SVMRFE), logistic regression
based Wald t-test and Logic regression (LOGICFS) for SNP selections and disease
classifications were also implemented using the R programming language. We also
applied SVM and other traditional neural network classifiers such as Levenberg-
Marquardt trained feed-forward neural network classifier, back-propagation trained feed-
forward neural network classifier ** for different feature selections on two real data sets.
Unfortunately, these learning classifiers didn’t work well. Therefore, here we did not list

their experimental results.

Cross-Validation (CV) is widely used for selecting tuning parameters and optimizing the
number of selected genes in the context of building classifiers to avoid over-fitting. We
split the data into training and testing samples, build the model based on training samples
only and evaluate the performance on the testing samples only based on cross-validation
(CV). We performed 20 runs and used 50% for training and 50% for testing for each run

and compared the average testing accuracy.

7.4.3 Results
Fig. 7-1 displays the testing accuracies of NBC, NMSC, SVM, and UDC in the analysis
of the MICC data set: 4 typical runs out of 20 experiments are shown. The legend marks

the different feature selections. Fig. 7-1 indicates that, NBC-MSC and NMSC-MSC
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feature selections are better than MSW-MSC, MMW-MSC, and SVMRFE; T-test is the
worst. The comparison shows that both support vector based feature addition and SRFA
with the use of different learning classifiers, the five feature selections, (MSW-MSC,
MMW-MSC, NBC-MSC, NMSC-MSC, and DENFIS-MSC) on the average, outperform
the popular method SVMRFE based SNP selections for disease classification in genetic
association study. This demonstrates that feature addition in general is superior to feature
elimination for this particular data set. Also, on the average, especially under low feature
dimension, supervised recursive feature additions (SRFA) are superior to support vector
based feature selections. Regarding the classification performances of different learning

classifiers, on the average, NBC, NMSC, and SVM were better than UDC.
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Fig. 7-1 The testing accuracies in applying NBC, NMSC, SVM, and UDC to MICC data
set. The legend marks the different feature selections.
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Fig. 7-2 presents the average testing accuracies on the NARAC CHRI18SNP case/control
data for feature dimensions 1 to 200 with the use of NBC and NMSC on the following
feature selections (the legend marks the different feature selections): MSW-MSC,
MMW-MSC, NBC-MSC, NMSC-MSC, SVMRFE, TTEST, and nonparametric
RANKSUM. Fig. 7-2 indicates that the testing accuracies of TTEST and RANKSUM are
the worst. This may be due to their selections ignoring the redundancy among SNPs,
while the other five approaches (two SVRFA and three SRFA) using MSC with
Spearmen Correlation Coefficients don’t. MSC combined with RFA helps to improve the

classification accuracy.

We noticed that as the number of features increases, the performance of the complex
model, such as SVMRFE increases while simpler models stay at the same level. The
reason behind this may be due to the fact that these models may detect the epistatic
effects (gene-gene interactions), those that do not exhibit statistically significant marginal
effects. The detection of higher dimensions of many epistatic effects requires even more
complex models. In contrast, when lower levels of LD are observed at given loci, a larger
number of SNPs are required to predict disease status, such as in the NARAC
CHR18SNP data set. Overall, the testing accuracies of NMSC-MSC are the best,
followed by NBC-MSC, MMW-MSC, MSW-MSC and SVMRFE; TTEST and
RANKSUM are the worst. Comparing NBC to NMSC, on the average, the performance
of NMSC is superior to NBC. Figures 7-1 and 7-2 also manifest that the classification

techniques are strictly paired up with feature selections. With the use of NBC, the
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performance of NMSC-MSC is not so good, but with the use of NMSC, the feature

selection NMSC-MSC performed the best.
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Fig. 7-2 The testing accuracies in applying NBC and NMSC to NARAC CHR18SNP data
set. The legend marks the different feature selections.

Tables 7-1 and 7-2 list the testing accuracies and the standard errors associated with the
highest training accuracies for given classifiers (NMSC, NBC, SVM, UDC) under
different feature selections (two SVRFA: MSW-MSC, MMW-MSC; three SRFA: NBC-
MSC, NMSC-MSC, DENFIS-MSC; three popular approaches: SVMRFE, Logistic-

Wald-t, LOGICFS) for the MICC data set and NARAC CHRI18SNP, respectively. In
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Table 7-1, the testing accuracies of LOGICFS were obtained from the 31 SNPs only in
the MICC data set. Table 2 indicates that, supervised learning based feature selection
NMSC-MSC with the use of NMSC outperforms others, followed by NBC-MSC with the
use of NMSC. Generally, support vector based feature selections are superior to
LOGICFS, and LOGICEFS is better than the feature selections based on parametric and
non-parametric tests. Regarding support vector based feature selection, on the average,

MMW-MSC outperformed MSW-MSC and SVMRFE.

Table 7-1 Testing accuracies associated with the highest training accuracies under
different feature selections for the MICC data set

Testing accuracy (mean value + standard deviation, %)

Feature Selection NMSC NBC SVM UDC
MSW-MSC 76.0+3.4 75.1£3.0 73.1+£4.5 73.6+2.9
MMW-MSC 77.4+29 75.9+3.0 74.4+23 74.8 £ 4.6

NBC-MSC 75.1+3.1 732+24 742 +£4.1 75.2+2.6
NMSC-MSC 75.0 £ 4.5 75.0+29 74.0+3.7 72.7+3.9
DENFIS-MSC 76.9+ 3.2 742+34 74944 75.6 £2.8
SVMRFE 77.0+4.2 73.9+2.7 73.1+£4.0 74.4+£3.2
T-TEST 756+ 2.6 76.4+3.0 74.5+£3.1 75.9+3.6
LOGICES 544+1.5

Table 7-2 Testing accuracies associated with the highest training accuracies under
different feature selections for the NARAC CHR18SNP data set

. —
Feature Selection Testlrl\llg Nallgglracy (mean value =+ standard devll\?]tglgn, %)
MSW-MSC 71.3+£0.7 68.5+£0.7
MMW-MSC 71.4+£04 69.3+0.3
NBC-MSC 743 £0.6 68.3£0.7
NMSC-MSC 77.7£0.7 67.7+0.3
SVMRFE 67.8+0.8 68.3+0.8
T-TEST 654 +0.5 66.1 £0.8

LOGICFS 67.1+2.1
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7.5 Discussion

Exploiting information redundancy due to associations between single nucleotide
polymorphism markers potentially reduces the efforts in terms of time and cost for
studies since currently it is still too expensive to genotype all available SNPs across the
human genome. For economic and quick diagnostic, we need advanced approaches to
mine the minimum SNPs with the highest prediction accuracy for complex diseases. In
this chapter we propose several new statistical learning algorithms, including SRFA and
SVRFA to deal with the redundancy in the highly correlated SNP data for finding the set
of SNPs enabling the most efficient classification of individuals in disease risk, which is
one of the ultimate goals of human genomic research. We compared our proposed
approaches with various settings (learning classifier with different complexity) to some
popular methods for SNP-disease association study to see the improvement made by the

proposed methods.

Compared to the well known feature selection methods SVMRFE and LOGICEFS, our
methods gained higher testing accuracy on the average. When SRFA is compared to two
learning classifiers (NMSC-MSC and NBC-MSC), on the average, NMSC-MSC is better.
Regarding SVRFA of MSW-MSC, MMW-MSC, and SVMRFE, our proposed MMW-
MSC is the best. Also, on the average, SRFA performed better than SVRFA. Our study
showed that using MSC for reducing the redundancy does not decrease the classification
accuracy; but instead MSC combined with SRFA helps to improve the classification

accuracy.
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The training model is an import factor in the evaluation of the testing accuracy. In our
experiments, the training with the use of DENFIS and other neural network classifiers
always achieve very high training accuracy, but the testing accuracy is not so good. The
occurrence of the over-fitting problem is probably related to the relatively small sample
size, since complex models, such as DENFIS, almost always require large sample size to
elicit their effects. While the complexity of the model increases in order to achieve higher
training accuracy, the requirement for more training sample also increases. If the sample
is not large enough, the relation and model mined from the training samples are not
suitable for testing, and as a result over-fitting happens. This is the reason that complex

models fit training samples very well, but not necessarily fit the testing samples.

Another point worthy of mentioning is that the learning classifier and feature selection
are strictly paired in our models. For instance, NMSC-MSC with the use of NMSC was
the best in the experiments on NARAC CHR18SNP, but NMSC-MSC with the use of
NBC was not so good. The issue of environmental variables also requires discussion.
With the inclusion of environmental variables in the MICC data we greatly improved the
prediction and classification performances. For instance, LOGICFS only achieved
54.4%+/-1.5% correct classification rate on the testing data without the environmental
variables. Also, SRFA provided a low (<60%) correct classification rate on the testing
data when only using the SNPs, but a higher (>73%) correct classification rate after

including the environmental variables as well. This confirms that in today’s common,
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complex diseases, genetic and environmental variables together cause the disease and that

information in necessary on both for high quality predictions and classifications.

Additionally, when SVM was applied to the feature sets extracted from the NARAC
CHR18SNP genotype data, the classification performance was pretty poor. However,
SVM worked well on the feature sets extracted from the MICC data. NARAC
CHR18SNP consists of categorical SNP data only, while the MICC data set consists of
many environmental variables of which most follow continuous distributions and have
important impact on the classification. As a result, the classification with the use of

support vector machines on NARAC CHR18SNP is not so good.

Our study shows that, if high level LD occurred in the population that can be captured by
the classification models, only one, two or at most five SNPs would be enough to obtain a
good predictive capacity. In the MICC data regions were pre-selected with high level LD
using candidate gene approaches. After applying our methods, it was evident that with 3-
5 variables we can achieve at least 79% classification accuracy (Fig. 7-1). On the other
hand SVMRFE may capture some lower level LD and hence when the number of SNPs
increases to 11-15, it achieved similar accuracies to our SRFA. In this case the simple
classifier combined with our SRFA, such as NMSC-MSC or NBC-MSC is sufficient and
performs better than complex models, such as SVMRFE, DENFIS, or LOGICFS. In
contrast, when lower levels of LD are observed at given loci, a larger number of SNPs are
required to predict disease status, such as in the case of the NARAC CHR18SNP data set.

This demonstrates that the classification accuracy can be improved if prior knowledge,
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such high LD regions are utilized in the selections. Therefore, finding high level LD with
our SRFA may directly reduce the cost of genotyping. Further investigation of whether
there is power reduction compared to the selected SNPs with direct assays of all common

SNPs will be conducted.
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