
 
 
 
 
 

FEATURE MINING WITH COMPUTATIONAL 
INTELLIGENCE AND ITS APPLICATIONS IN IMAGE 

STEGANALYSIS AND BIOINFORMATICS 
 
 
 

By 
 

Qingzhong Liu 
 
 
 
 
 

Submitted in Partial Fulfillment  
of the Requirements for the  

 
 

Doctorate of Philosophy in Computer Science 
 
 
 
 
 

New Mexico Institute of Mining and Technology 
Department of Computer Science 

 
 

Socorro, New Mexico 
July 2007 

 



    ii

ACKNOWLEDGEMENTS 

Many people contributed to the success of this work.  First, I gratefully acknowledge my 

advisor, Dr. Andrew Sung, whose advice, guidance, passion, and support of this study 

was indispensable.  Dr. Sung has been instructing my Ph.D. study since I joined the 

Computer Science Department of New Mexico Institute of Mining and Technology 

(NMT) in 2002.  He is a great mentor with broad and long view and continuous scientific 

passion.  I truly appreciate his advice and guidance in my research and his generous 

support throughout my PhD study as well as his encouraging and affording me to attend 

the prestigious international academic conferences, and hence broaden my horizon and 

make me thriving.  Without him, I could not have this opportunity of pursuing my Ph.D. 

at the NMT of U.S.A., let alone the finish of this thesis and my growth up in the past five 

years.  

 

I would like to thank the other members of my committee, Dr. Bernardete Ribeiro, Dr. 

Srinivas Mukkamala, and Dr. Dongwan Shin, who have provided assistance and guidance 

during my PhD study.  They also gave me helpful suggestions on my study.  I am very 

grateful for their help.  

  

Appreciations go to Dr. Soliman, Dr. Liebrock, Dr. Mazamdar, and Dr. Clausen, who 

taught me the knowledge of several subjects in computer science. I got much expertise 

and knowledge from them since I was their Teaching Assistant.  

 



    iii

I thank Drs. Lyu, Simoncelli and Harmsen for providing me their codes which are used in 

the comparison study in steganalysis (chapters 2, 3, and 4) and Drs. Masotti, Tang, Zhou, 

and Diaz-Uriarte for sending me or publicizing their codes which are used in the 

comparison study in Microarray analysis (chapter 6).  Special thank goes to Dr. Liang for 

her insightful discussion and offering me the SNP data sets which are tested in chapter 7.  

 

The friendship of Dr. Jianyun Xu and Dr. Zhongxue Chen is highly appreciated and has 

led to many interesting and good-spirited discussions related to this research.  

 

Without a shadow of doubt, my English tutors Lisa, Kay, and Jonathan did very good job 

in helping me to improve my English.  I appreciate them for their very helpful tutoring, 

great patience, precious time, and love from the bottom of my heart.  

 

Last, but not least, I would acknowledge my family for their understanding and love 

during the past years.  Their support, encouragement, passion, and love were in the end 

what made this dissertation possible. 

 

 !(Hallelujah ) הַלְלוּיָהּ 

 

 

 



    iv

ABSTRACT 

Steganalysis aims to detect the information-hiding behavior in steganographic systems. 

Bioinformatics is to solve the biological problems usually on the molecular level. 

Although steganalysis and bioinformatics are completely different, both of them involve 

feature mining and computational intelligence techniques. It is very challenging to solve 

the problems in these two fields. In this thesis, chapter 1 is the introduction on 

steganography and steganalysis and chapter 5 is the introduction on bioinformatics; the 

contributions in image steganalysis are presented in chapters 2, 3, and 4 and the 

contributions in bioinformatics are presented in chapters 6 and 7, described as follows. 

 

Information-hiding ratio is a well-known reference to evaluation of the detection 

performance in steganalysis. In chapter 2, I introduce another parameter of image 

complexity to evaluation of the performance, and present a scheme of steganalysis of 

Least Significant Bit (LSB) matching steganography based on feature extraction and 

pattern recognition techniques. Comparing to other well-known methods of steganalysis 

of LSB matching steganography, our method performs the best. The significance of 

features and the detection performance depend not only on the information-hiding ratio 

but also on the image complexity. 

 

In chapter 3, I present a scheme based on feature mining and pattern classification to 

detect LSB matching steganography in grayscale images, which is a very challenging 

problem in steganalysis. Different types of features are proposed. In comparison with 

other well-known feature sets, the set of proposed features performs the best. I compare 
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different learning classifiers and deal with the issue of feature selection that is rarely 

mentioned in steganalysis. In our experiments, the combination of a Dynamic Evolving 

Neural Fuzzy Inference System (DENFIS) with a feature selection of Support Vector 

Machine Recursive Feature Elimination (SVMRFE) achieves the best detection 

performance. Results also show that image complexity is an important reference to 

evaluation of steganalysis performance.  

 

Based on the Generalized Gaussian Distribution (GGD) model in the quantized DCT 

coefficients, the errors between the logarithmic domain of the histogram of the DCT 

coefficients and the polynomial fitting are extracted as features to detect the adulterated 

JPEG images and the untouched ones. Computational intelligence techniques are applied 

to extracted features. The designed method is successful in detecting the information-

hiding types and the information-hiding length in the multi-class JPEG images including 

the CryptoBola, F5, and JPHS steganographic systems. The details are described in 

chapter 4. 

 

 
Chapter 6 aims to improve the classification of microarray gene expression data, which 

have a high dimension of variables and small sample size. Gene selection is very 

important to the classification. Most existing gene selection methods, including modified 

test statistic-based approaches and model-based approaches such as logistic model or 

mixed models, give highly correlated significant genes that are redundant for 

classification. I develop a new gene selection method, Recursive Feature Addition (RFA), 

which combines supervised learning and statistical measures for the chosen candidate 
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genes to deal with the redundant information. I also propose an algorithm of Lagging 

Prediction Peephole Optimization (LPPO) to choose the final feature set. 

 

Comprehensive evaluation of common genetic variations through association of SNP 

structure with common complex diseases in the genome-wide scale is currently a hot area 

in human genome research. Exploiting information redundancy due to associations 

between single nucleotide polymorphism (SNP) markers potentially reduces the efforts in 

terms of time and cost for these studies. One of the fundamental questions in SNP-disease 

association study is how many SNPs is enough to provide good prediction performance 

of disease status. In chapter 7, I develop a new feature selection method named 

Supervised Recursive Feature Addition (SRFA). This method combines supervised 

learning and statistical measures for the chosen candidate features/SNPs to deal with the 

redundancy information so that it can improve the classification in association studies. 

Additionally, I propose a Support Vector based lowest weight and lowest correlation 

Recursive Feature Addition (SVFRA) scheme in SNP-diseases association analysis. 

Results show that on the average, our SRFA outperforms the well-known method of 

Support Vector Machine Recursive Feature Elimination and logic regression based SNP 

selections for disease classification in genetic association study. 
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CHAPTER 1: INTRODUCTION TO STEGANOGRAPHY 

AND STEGANALYSIS 

Steganography is the art and science of communicating hidden messages in such a way 

that no one apart from the intended recipient knows of the existence of the message; this 

is in contrast to cryptography, where the existence of the message itself is not disguised, 

but the content is obscured. The word "Steganography" is of Greek origin and means 

"covered, or hidden writing". Its ancient origins can be traced back to 440 BC. Herodotus 

mentions two examples of Steganography in The Histories of Herodotus [Petitcolas et al. 

1999]. Demeratus sent a warning about a forthcoming attack to Greece by writing it on a 

wooden panel and covering it in wax. Wax tablets were in common use then as re-usable 

writing surface, sometimes used for shorthand. Another ancient example is that of 

Histiaeus, who shaved the head of his most trusted slave and tattooed a message on it. 

After his hair had grown the message was hidden. The purpose was to instigate a revolt 

against the Persians. Later, Johannes Trithemius's book Steganographia is a treatise on 

cryptography and steganography disguised as a book on black magic. 

 

The advantage of using steganography over using cryptography alone is that the secret 

messages will not attract attention. An unhidden coded message, no matter how 

unbreakable it is, will arouse suspicion. Generally, we can hide data in digital media 

including images, audios, and videos as well as TCP/IP packets, etc. Currently, digital 

image is one of the most popular media types for carrying covert message. The innocent 

image is called carrier or cover; and the adulterated image carrying some hidden message 
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is called stego-image or steganogram. Fig. 1-1(a) is an example of steganogram wherein 

the text-file about Alzheimer's disease is hidden. Fig. 1-1(b) lists the covert texts. 

 

 

Alzheimer's: The Mysteries of the Most Common Form of Dementia  
 
In November of nineteen ninety-four, Ronald Reagan wrote a letter to the 
American people.  The former president shared the news that he had 
Alzheimer’s disease.  Mister Reagan began what he called his journey into the 
sunset of his life.  That ten year journey ended on June fifth, two thousand four, 
at the age of ninety-three. 
In his letter, America's fortieth President wrote about the fears and difficulties 
presented by Alzheimer’s disease.  He said that he and his wife Nancy hoped 
their public announcement would lead to greater understanding of the condition 
among individuals and families affected by it. 
Ronald Reagan was probably the most famous person to suffer from 
Alzheimer's disease.  In the United States, about four million five hundred 
thousand people have the disease.  Many millions more are expected to have it 
in years to come.  
Doctors describe Alzheimer's as a slowly increasing brain disorder.  It affects 
memory and personality -- those qualities that make a person an individual.  
There is no known cure.  Victims slowly lose their abilities to deal with 
everyday life.  At first they forget simple things, like where they put something 
or a person’s name. 
As time passes, they forget more and more.  They forget the names of their 
husband, wife or children.  Then they forget who they are.  Finally, they 
remember nothing.  It is as if their brain dies before the other parts of the body.  
Victims of Alzheimer’s do die from the disease, but it may take many years. 

(a) (b) 

 Fig. 1-1 An example of steganogram. The covert message shown in (b) is embedded in 
the left image (a). 

 

Though not proven, there have been claims that terrorists have been using steganography 

to communicate with each other in planning attacks. It has been thought that images with 

embedded messages have been placed on bulletin boards or dead drops for other terrorists 

to pick up and then retrieve any hidden messages. Since it is so difficult to detect when 

steganography is taking place, this is a very secure form of communication and it has 

thought to be used by Al-Qaida [Kelley 2001, http://www.usatoday.com/tech/news/2001-02-05-

binladen.htm]. 

 

The common information-hiding techniques implement hiding data in digital images by 

modifying the pixel values of the space domain or modifying the transform coefficients. 
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In hiding data in the space domain, one simple method is Least Significant Bit (LSB) 

steganography or LSB embedding [Kurak and McHugh, 1992]. Each byte of an image 

represents a different color. The last few bits in a color byte, however, do not hold as 

much significance as the first few. Therefore, two bytes that only differ in the last few 

bits can represent two colors that are virtually indistinguishable to the human eye. For 

example, 00100100 and 00100101 can be two different shades of red, but since it is only 

the last bit that is different, it is impossible to see the color difference. LSB embedding, 

then, alters these last bits by hiding a message within them. LSB embedding has the merit 

of simplicity, but suffers from the lack of robustness. LSB matching, another method of 

hiding data in space domain randomly alters the bytes by plus or minus one according to 

the bit of cipher message, not simply replacing the last bits [Sharp, 2001].  

 

In hiding data in the transform domain, a message is embedded by the way of modifying 

transform coefficients of the cover. There are three common transform techniques: 

Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and Discrete 

Fourier Transform (DFT).  For example, hiding data in the low frequency part of 2-D 

lossless wavelet transform and utilizing convolution error correction coding, Xu et al. 

designed different information-hiding systems by embedding data in the wavelet domain 

to achieve a big hiding capacity and  extremely robustness against JPEG compression 

[Xu et al., 2003, 2004]. Derek Upham publicized JPEG-JSteg to hide data in JPEG 

images [Derek Upham, http://www.nic.funet.fi/pub/crypt/steganography]. Its embedding algorithm 

sequentially replaces the least-significant bit of DCT coefficients with the message’s data 
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[Provos and Honeyman, 2003]. And it is easy to be detected [Zhang and Ping, 2003]. 

Instead of replacing the least-significant bit of DCT coefficient with message data, F5 

decrements its absolute value in a process called matrix encoding [Westfeld, 2001]. 

Additionally an efficient FFT based signal scheme for multimedia steganography was 

proposed to permit the use of signal sets of large dimensions without increasing the 

computational complexity drastically [Ramkumar et al., 1999].  

 

  

(a) (b) 

Fig. 1-2 An original cover (a) and the stego-image (b) 

 

Other information hiding techniques include spread spectrum steganography [Marvel et 

al., 1999], statistical steganography, distortion, and cover generation steganography 

[Katzenbeisser and Petitcolas, 2000], etc. Many hiding tools can be downloaded from 

Internet based on different hiding methods such as Invisible Secrets 

[http://www.invisiblesecrets.com], Secure Engine [http://securengine.isecurelabs.com/, retrieved on 

Apr 27, 2007], Hide4PGP [http://www.heinz-repp.onlinehome.de/Hide4PGP.htm], and CryptoBola 
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[http://www.cryptobola.com]. Fig. 1-2 shows a JPEG image (a) and the steganogram (b) 

wherein 628-byte data is hidden.  It is very challenging to judge which one is carrying the 

hidden data in the existence of both the cover and the stego-image, let alone in the single 

appearance of the cover or the stego-image.   

 

Steganalysis aims to discover the presence of hidden data. Westfeld performed the blind 

steganalysis on the basis of statistical analysis of PoVs (pair of values). This method, so-

called χ2-statistical analysis [Westfeld and Pfitzmann, 2000], gave a successful result to a 

sequential LSB (Least Significant Bit) embedding steganography. Provos extended this 

method by re-sampling the test interval and re-pairing values [Provos, 2001]. Fridrich et 

al. introduced a RS steganalysis which is based on the partition of an image’s pixels into 

three groups: Regular, Singular and Unusable and estimate the possible embedded 

message length of the LSB steganography [Fridrich, Goljan and Du, 2001]. Lyu and 

Farid [Lyu and Farid, 2004, 2005] described an approach to detect hidden messages in 

images that uses a wavelet-like decomposition to build higher-order statistical models of 

natural images. Support vector machines are then used to discriminate between 

untouched and adulterated images. Avcibas et al. presented a universal detection 

technique for steganalysis of image based on image quality metrics [Avcibas et al., 2003].  

Based on the 3-D DFT and the calculation of the center of mass, Harmsen and Pearlman 

proposed a detector of the Histogram Characteristic Function Center Of Mass (HCFCOM) 

that is very successful in detecting multiple information-hiding systems [Harmsen and 

Pearlman, 2003]. Based on HCFCOM, Ker designed Adjacency HCFCOM (A. 
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HCFCOM) and Calibrated Adjacent HCFCOM (C. A. HCFCOM) to improve the 

probability of detection for LSB matching in grayscale images [Ker, 2005].  

 

To this date, most publications refer information hiding ratio to evaluate the performance 

of steganalysis. Specifically, the higher the hiding ratio, the higher the detection 

performance will be. However, to our knowledge, few publications mentioned the 

parameter of image complexity that is also very important to evaluate the detection 

performance.  On the other side, most of steganalysis methods depend on feature design 

and pattern classification techniques. But the feature selection was rarely mentioned in 

the past literatures in steganalysis. These two issues will be addressed as well as new 

detection methods designed in the following chapters.  

 

The remainder of steganalysis is organized as follows. Chapter 2 describes the 

steganalysis of LSB matching steganography which is one of the most difficult space-

hiding steganography for detection, and introduces the shape parameter of Generalized 

Gaussian Distribution (GGD) in the wavelet domain to measure the image complexity 

and evaluate the steganalysis performance. Chapter 3 presents new features to improve 

the detection performance in stgeganalysis of LSB matching steganography in grayscale 

images and deals with the feature selection in the steganlysis. Chapter 4 is the detection 

of the information-hiding behavior in transform-hiding steganography, focusing on JPEG 

images.   
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CHAPTER 2: STEGANALYSIS OF SPACE-HIDING 

STEGANOGRAPHIC SYSTEMS  

2.1 Introduction  

Space-hiding steganographic system implements embedding data in the space domain. 

Specifically, for image, it modifies the pixel values to achieve the goal of hiding data. A 

popular information-hiding technique in space-hiding steganographic systems in images 

is Least Significant Bit (LSB) Embedding/Replacement, which combines high capacity 

with visual imperceptibility and very ease of implementation. However this information-

hiding system has the weakness to the sensitive statistical detections such as χ2-test and 

RS-steganalysis. A minor modification of the LSB Embedding/Replacement method, 

which we call LSB Matching, retains the favorable characteristics of LSB Replacement 

but is more difficult to detect statistically.  

 

2.2 LSB Matching and Related Work on the Detection 

LSB Matching was first described by Sharp [Sharp, 2001]. ]. In each case the secret data 

is taken as a stream of bits, and the cover image is considered as a stream of bytes. These 

bytes are taken in a pseudorandom order, as specified by a secret key which is presumed 

to be shared between sender and recipient of the stego image. This serves both to prevent 

the enemy steganalyst from reading the secret data straight off and also to spread the 

secret data over the cover when there is less than the maximal amount. Yu et al. designed 

the LSB matching steganography evading the statistical analyses of χ2-test and RS-
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steganalysis [Yu et al., 2004]. The idea is to preserve the occurrence of PoVs by applying 

the random flipping to embedding a message and to adjust the RS statistical measures 

with unused embedding parts after embedding a secret message. Since LSB matching is 

hard for detection and easy for implementation, it’s important and challenging to design a 

reliable method for detecting the information-hiding.  

 

There are a few detectors that may be used in detecting the information-hiding in LSB 

matching steganography.  One of them is the histogram characteristic function center of 

mass (HCFCOM) [Harmsen and Pearlman, 2003] since the embedding of LSB matching 

can be modeled on noise adding. To improve the probability of detection for LSB 

matching in grayscale images, based on the Harmsen and Pearlman’s contribution, Ker 

proposed Adjacency HCFCOM (A. HCFCOM) and Calibrated Adjacency HCFCOM (C. 

A. HCFCOM) [Ker, 2005]. Farid and Lyu achieved an approach to detecting hidden 

messages in images by using a wavelet-like decomposition to build high-order statistical 

models of natural images [Lyu and Farid, 2004, 2005]. Fridrich et al. presented a 

Maximum Likelihood (ML) estimator for predicting the hiding ratio of non-adaptive ±K 

embedding in images [Fridrich et al., 2005]. Unfortunately, the ML estimator starts to 

“fail to reliably estimate the message length once the variance of the sample exceeds 9” 

[Fridrich et al., 2005]. Recently, correlation features in spatial domain and wavelet 

domain are extracted for image steganalysis [Liu, Sung and Ribeiro, 2005], although the 

method is effective for detection of several steganography systems, the images in the 

experiments are downloaded from Internet and the almost all of them are compressed. It 

is not done on the experiments on never compressed images. Generally, regarding the 
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information-hiding in space domain, it is much more difficult to detect the information-

hiding in never compressed images than that in compressed images. 

 

To our knowledge, most publications evaluate the steganalysis performance in reference 

to information hiding ratio and miss another important parameter of image complexity 

that is also very important in evaluating the detection performance.  In this chapter, the 

shape parameter of the Generalized Gaussian Distribution (GGD) in the wavelet domain 

is introduced to measure the image complexity, as a reference as well as the information-

hiding ratio to the evaluation of the steganalysis performance. Different types of features 

are designed for detection of the information-hiding in LSB matching steganography. 

 

2.3 Image Complexity and GGD model 

Several articles [Huang and Mumford, 1999;  Sharifi and Leon-Garcia, 1995;  

Wainwright and Simoncelli, 2000; Wouwer et al., 1999;  Winkler, 1995] describe the 

statistical models of images such as Markov Random Field models (MRFs), Gaussian 

Mixture Model (GMM), and Generalized Gaussian Distribution (GGD) model in 

transform domains, such as, DCT, DWT, and Discrete Fourier Transform (DFT). 

 

Experiments show that a good Probability Distribution Function (PDF) approximation for 

the marginal density of coefficients at a particular sub-band produced by various types of 

wavelet transforms may be achieved by adaptively varying two parameters of the GGD 

[Sharifi and Leon-Garcia, 1995;  Moulin and Liu, 1999], which is defined as 
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(| |/ )( ; , )

2 (1/ )
xp x e

βαβα β
α β

−=
Γ                                                              (2-1)  

 

where 1

0
( ) , 0t zz e t dt z

∞ − −Γ = >∫  is the Gamma function, the scale parameter α models the 

width of the PDF peak (standard deviation), and the shape parameter β is inversely 

proportional to the decreasing rate of the peak. The GGD model contains the Gaussian 

and Laplacian PDFs as special cases, using β = 2 and β = 1, respectively. 

 

Generally, an image with high complexity has a high shape parameter to the GGD in the 

wavelet domain. Fig. 2-1 shows the 256×256 grayscale images with different textures on 

the left and the histogram distributions of the Haar wavelet HH sub-band coefficients and 

the GGD simulations on the right.   

 

The fact that the high peak distribution of the wavelet coefficients is obtained at the value 

of zero indicates that adjacent pixels are highly correlated. More clearly, Fig. 2-2(a) 

shows an 8-bit grayscale image. The variable v(i, j) denotes the grayscale value at point (i, 

j) and v(i+1, j) denotes the grayscale value at the point (i+1, j).  The occurrences of the 

pair (v(i, j), v(i+1, j)) calculate the joint distribution of the adjacent points, shown in Fig. 

4(b) which demonstrates the high correlation of adjacent pixels.  
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Fig. 2-1 Demonstration of image complexity and the GGD. The 256×256 grayscale 
images with different complexity (left) and the generalized Gaussian distribution of the 
HH sub-band coefficients (right), decomposed by Haar wavelet. Fig. 2-1 indicates that 
the image with low complexity has low shape parameter of the GGD and the image with 
high complexity has high shape parameter of the GGD. 
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(a) (b) 

Fig. 2-2 An 8-bit grayscale image (a) and the joint distribution (b) of the adjacent pixel 
pair (v(i, j), v(i+1, j)). The horizontal axis in (b) shows the value of the pixel (i, j) and the 
vertical axis marks the value of the pixel (i +1, j). The joint distribution indicates the 
probability of the pair (v(i, j), v(i+1, j)). 
 

2.4 Feature Extraction 

Based on the GGD model and the observation of the high correlation of the adjacent 

pixels, mentioned in 2.3, here is the hypothesis that the information-hiding in space-

hiding systems will affect the high correlation of the adjacent pixels. Based on this 

hypothesis, the following features are designed. 

 

We consider the correlation between LSBP and the second Least Significant Bit Plane 

(LSBP2).  M1 = { 1
ijb }(i=1, 2, …, m; j = 1, 2, …, n; i and j give the location of the element 

in the matrix) is the m×n matrix of the binary bits of the LSBP and M2  = { 2
ijb }(i=1, 2, …, 

m; j = 1, 2, …, n) is the m×n matrix of binary bits of the LSBP2.  Here m and n are the 
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numbers of pixels in horizontal and vertical directions, and E(•) is the mathematical 

expectation. The covariance function is defined as 

 

  1 2 1 1 2 2( , ) [( )( )]Cov x x E x u x u= − −                                                                      (2-2) 

where ( )i iu E x= . 

C1 is defined as follows: 

1 2

1 2
1 2

( , )1   ( ,  ) = 
M M

Cov M MC cor M M
σ σ

=                                                               (2-3) 

 where 
1

2
1( )M Var Mσ =  and 

2

2
2( )M Var Mσ = . 

The autocorrelation C(k, l) of LSBP is defined as follows: 

11( )( ) ( 1)( 1)( , )   ( ,  ) m k n l k l mnC k l cor X X− − + +=                                                             (2-4) 

where, 11( )( ) 1{ }( 1, 2,..., ; 1, 2,..., )ij
m k n lX b i m k j n l− − = = − = −  

and ( 1)( 1) 1{ }( 1, 2,..., ; 1, 2,..., )ij
k l mnX b i k k m j l l n+ + = = + + = + + . 

Set different values to k and l, the features from C2 to C15 are presented as follows:   

                  C2 = C(1, 0);    C3 = C(2, 0);    C4 = C(3, 0);    C5 = C(4, 0);  

                  C6 = C(0, 1);    C7 = C(0, 2);    C8 = C(0, 3);    C9 = C(0, 4);  

                  C10 = C(1, 1);  C11 = C(2, 2);  C12 = C(3, 3);  C13 = C(4, 4);  

                  C14 = C(1, 2);  C15 = C(2, 1). 

 

The variable ρk denotes the histogram probability density of cover at the intensity, k (k = 

0,1, …,N-1, for 8-bit grayscale image, N = 256).  The variable, ρ'k, denotes the histogram 

probability density of adulterated images at the intensity k. The LSBP hiding rate r is the 
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relative length of hidden binary data, assume the hidden data is i.i.d., for 8-bit grayscale 

image, ρ'k is given as follows: 

ρ'k = (1-r/2)* ρk + (r/4)* ρk-1+(r/4)* ρk+1,     2 ≤ k ≤ 253 

                       ρ'0 = (1-r/2)* ρ0 + (r/4)* ρ1 

                       ρ'1 = (1-r/2)* ρ1 + (r/4)* ρ2+(r/2)* ρ0 

                       ρ'255 = (1-r/2)* ρ255 + (r/4)* ρ254 

                       ρ'254 = (1-r/2)* ρ254 + (r/4)* ρ253+(r/2)* ρ255 

(2-5) 

Without original cover, just based on the distribution density of the histogram, it is too 

difficult to accurately judge that the test image is hiding some data or not and predict the 

hiding ratio r. However, LSB matching steganography definitely modifies the distribution 

density of the histogram. Based on this point, we present the correlation features on the 

histogram. The histogram probability density, H, is denoted as (ρ0, ρ1, ρ2, …, ρN-1 ). The 

histogram probability densities, H e, H o, H l1, and H l2 are given:   

                       H e = (ρ0, ρ2, ρ4…ρN-2) ,       H o = (ρ1, ρ3, ρ5…ρN-1);  

                       H l1 = (ρ0, ρ1, ρ2…ρN-1-l),     H l2 = (ρl, ρl+1, ρl+2…ρN-1). 

The autocorrelation coefficients C16 and CH(l) are defined: 

C16 = cor (He, Ho)                                                                                        (2-6) 

CH(l) = cor (Hl1, Hl2)                                                                                     (2-7) 

Set l = 1, 2, 3 and 4, the features C17 to C20 are: 

                  C17 = CH(1),   C18 = CH(2),    C19 = CH(3),    C20=CH(4). 

Besides the features mentioned above, we consider the difference between the testing 

image and the denoised. CI denotes the cover image and SI denotes the stego-image. 

Embedding information into images may be modeled as the process of adding noise. D (·) 
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is some denoising function. We define the difference between pre-denoised and post-

denoised as follows: 

            ( )CIE CI D CI= −                                                                                             (2-8) 

( )SIE SI D SI= −                                                                                               (2-9) 

Generally, the statistics of ECI and ESI are different. We apply wavelet hard-threshold 

denoising without shrinkage [Mallat, 1999] to the image. Firstly, apply wavelet transform 

to test image, set zero to the wavelet coefficients in HL, LH and HH sub-bands of which 

the absolute value are smaller than some threshold value t, and reconstruct the image by 

applying the inverse wavelet transform to the modified wavelet coefficients. The 

difference between the original and the reconstructed Et is the m×n 

matrix, { }( 1, 2,..., ; 1, 2,..., )ij
t tE e i m j n= = = . The correlation features in the difference domain 

are given as follows 

           ,11( )( ) ,( 1)( 1)( ;  , )   ( ,  )E t m k n l t k l mnC t k l cor E E− − + +=                                                        (2-10) 

where, 

,11( )( ) { }( 1, 2,..., ; 1, 2,..., )ij
t m k n l tE e i m k j n l− − = = − = − ;

,( 1)( 1) { }( 1, 2,..., ; 1, 2,..., )ij
t k l mn tE e i k k m j l l n+ + = = + + = + + .         

 Set different values to t, k and l, features C21 to C41 are presented as follows: 

C21= (1.5;  0,1)EC ; C22= (1.5;  1,0)EC ; C23= (1.5;  1,1)EC ; C24= (1.5;  0, 2)EC ; 

C25= (1.5;  2,0)EC ;  C26= (1.5;  1, 2)EC ; C27= (1.5;  2,1)EC ; C28= (2;  0,1)EC ; 

C29= (2;  1,0)EC ; C30= (2;  1,1)EC ;   C31= (2;  0, 2)EC ; C32= (2;  2,0)EC ; 

C33= (2;  1, 2)EC ;   C34= (2;  2,1)EC ; C35= (2.5;  0,1)EC ; C36= (2.5;  1,0)EC ; 
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C37= (2.5;  1,1)EC ; C38= (2.5;  0, 2)EC ; C39= (2.5;  2,0)EC ; C40= (2.5;  1, 2)EC ; 

C41= (2.5;  2,1)EC . 

In RGB color images, the matrices Mr1, Mg1, and Mb1  stand for the least significant bit 

planes of red, blue and green channels, respectively, the correlation coefficients Crg, Crb, 

and Cgb  are given as follows, where abs(·) denotes the absolute value function. 

 Crg = abs(cor(Mr1, Mg1))                                                                                  (2-11) 

Crb = abs(cor(Mr1, Mb1))                                                                                  (2-12) 

Cgb = abs(cor(Mg1, Mb1))                                                                                 (2-13) 

Similar to (2-10), ,t cE (c=r, g, b) is the difference across the color channels (red, green, 

and blue) of the original and the reconstructed. The correlation features are defined as 

follows.  

, ,( ) ( , )
rgE t r t gC t cor E E=                                                                                 (2-14) 

, ,( ) ( , )
rbE t r t bC t cor E E=                                                                                 (2-15) 

, ,( ) ( , )
gbE t g t bC t cor E E=                                                                                 (2-16) 

After extracting the features defined above, we apply analysis of variance (ANOVA) 

[Avcibas et al, 2003; Rencher, 2002] to the features and pick up the features with high 

statistical significances as the final detectors.  

 

2.5 One-way ANOVA 

The purpose of one-way ANOVA [Rencher, 2002] is to determine whether the groups are 

actually different in the measured characteristic. The model of one-way ANOVA is: 
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  ,    ( 1, 2, ..., ;  1, 2, ..., )
ij j ij

y Y i I j Jε= + = =  (2-17)

  
1

1 I

j ij

i

Y y
I =

= ∑  (2-18)

1 1

1 I J

ij

i j

Y y
IJ = =

= ∑∑  (2-19)

Where yij is a matrix of observations in which each column represents a different group 

and εij is a matrix of random disturbances.  I is the sample number for every group and J 

is the number of groups.  The variations, SS(Between) and SS(Within), are measured by: 

  
2

1

( ) ( )
J

j

j

SS Between Y Y
=

= −∑  (2-20)

  
2

1 1

( ) ( )
I J

ij

i j

SS Within y Y
= =

= −∑∑  (2-21)

Dividing the corresponding sum of squares by its degrees of freedom, the mean sum of 

squares is given by: 

  
( )

( )
1

SS Between
MS Between

J
=

−
 (2-22)

  
( )

( )
SS Within

MS Within
IJ J

=
−

 (2-23)

The F-statistic for ANOVA is a ratio of MS(Between) to MS(Within). The p-value is 

given by comparing the F-statistic with the F(J-1, IJ-J)-distribution, which tells the 

probability H0:  

  
)(
)(~

WithinMS
BetweenMS

F =  (2-24)
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  )~( FFp >Ρ=  (2-25)

  
0 1 2

: ...
J

H Y Y Y= = =  (2-26)

 

2.6 Experimental Setup 

Generally, embedding data in once compressed images by modifying the pixel values is 

easier to detect than hiding data in uncompressed images. The original covers in our 

experiments are 5000 TIFF raw format digital pictures during 2003 to 2005. These 

images are 24-bit, 640×480 pixels, lossless true color and never compressed.  

 

In steganalysis of color images, according to the pre-processing method in [Lyu and Farid, 

2004, 2005], we cropped the original images into 256×256 pixels in order to get rid of the 

low complexity parts of the images. The cropped images are covers in our experiments. 

We categorize the covers according to the parameter of image complexity. The image 

complexity for color images is calculated as follows: 

              ( ) / 3r g bβ β β β= + +                                                                                   (2-27) 

The variable ( , , )c c r g bβ =  is the shape parameter of the GGD of the HH sub-band 

coefficients, corresponding to red, green, and blue channel. Fig. 2-3 lists some cover 

samples with different image complexity in color images. 

 

In steganalysis of grayscale images, the cropped color images are converted into 

grayscales that are used as covers. The image complexity for grayscale is measured by 

the shape parameter of the GGD of the HH sub-band coefficients.  



    20

 

 
β =0.3422 β =0.3856 

 
β =0.4269 β =0.4627 

 
β =0.4655 β =0.4678 

 
β =0.5413 β =0.5457 

 
β =0.5493 β =0.5699 

 
β =0.6233 β =0.6305 

 
β =0.7111 β =0.7816 

 
β =0.9466 β =0.9470 

 
β =1.0013 β =1.2104 

 
β =1.5276 β =1.6008 

 
Fig. 2-3 Cover samples with different image complexity that is measured by the GGD 
shape parameter in the wavelet domain. 
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Stego-images are produced with the use of LSB matching algorithm. The hidden 

messages cover different types such as digital image, audio, text file, pdf file, zipped file, 

executable code, source code, random signal, etc. The hidden data in any two covers are 

different.   

 

In steganalysis of color images, the correlation feature set consists of the following 

features: C1, C2, C6, C10, C14, C15, C16, C17, 

(2.5;  0,1)EC , (2.5;  1,0)EC , (2.5;  1,1)EC , (3;  0,1)EC , (3;  1,0)EC , and (3;  1,1)EC  

defined in Section 3, corresponding to red, green, and blue channels, 14×3 = 42 features; 

( ),  ( ),  ( )
rg rb gbE E EC t C t C t  (t = 1, 1.5, and 2), 3×3 = 9 features; in addition to Crg, Crb, and 

Cgb, total 54 features. We compare the proposed feature set against other well-known 

feature sets of the Histogram Characteristic Function Center of Mass (HCFCOM) 

[Harmsen and Pearlman, 2003] and High-Order Moment statistics in Multi-Scale 

decomposition domain (HOMMS) [Lyu and Farid, 2004, 2005]. There are 3 features of 

HCFCOM and 216 features of HOMMS in color images. 

 

The experiments on steganalysis of LSB matching steganography in grayscale images are 

the same to color images except that correlation feature set consists of the 41 features, C1 

to C41, defined in section 3 and HOMMS feature set consists of 72 features in grayscale 

images. We extend HCFCOM feature set to the high order moments. Here HCFHOM 

stands for HCF center of mass High Order Moments; HCFHOM (r) denotes the rth order 

moment. In our experiments, the HCFHOM feature set consists of HCFCOM and 
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HCFHOM(r) (r = 2, 3, and 4). Additionally, Ker proposed two novel ways of applying 

the HCF: calibrating the output using a down-sampled image and computing the 

adjacency histogram instead of the usual histogram [Ker, 2005]. The best discriminators 

are Adjacency HCFCOM (A.HCFCOM) and Calibrated Adjacency HCFCOM 

(C.A.HCFCOM).  

 

Generally, different classifiers have different classification performances on different 

feature sets. Considering this point, we utilize the following classifiers:  

1. Fisher Linear Discriminate (FLD),  

2. Optimization of the Parzen Classifier (ParzenC),  

3. Naive Bayes classifier (NBC),  

4. Support Vector Machines (SVM),  

5. Linear Bayes Normal Classifier (LDC),  

6. Quadratic Bayes Normal Classifier (QDC),  

7. Bayes Classifier (BC) that is based on maximal likelihood estimation of Gaussian 

mixture model,  

8. Adaboost algorithm (Adaboost) which produces a classifier composed from a set 

of weak rules. 

The details of these classifiers are described in the references [Duda, Hart and Stork, 

2001; Friedman, Hastie and Tibshirani, 2000; Heijden et al., 2004; Schlesinger and 

Hlavac, 2002; Taylor and Cristianini, 2004; Vapnik, 1998; Webb, 2002].  We apply each 

classifier to each feature set in each category of image complexity sixteen times. In each 

time, the training samples are randomly chosen and the remaining samples are tested.  
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2.7 Comparison of Statistical Significances  

A parametric test is a test that requires a parametric assumption such as normality. 

Nonparametric test does not rely on parametric assumption like normality. Parametric 

tests work well with large samples even if the population is non-Gaussian [Motulsky, 

1995]. Fig. 2-4 lists the F statistics and p-values of correlation features (CF), HOMMS, 

and HCFCOM features, extracted from 5000 covers and 5000 LSB matching stego-

images in color images. The LSBP hiding ratio of these stego-images is 1 or the 

maximum hiding ratio. Fig. 2-4 indicates that, regarding individual features, HCFCOM 

features with the highest F statistics and lowest p-values are better than correlation 

features; correlation features with higher F statistics and lower p-vales are better than 

HOMMS features.  In HOMMS, there are many features with high p-values, indicating 

that these features are weak for discriminating cover images and stego-images. Regarding 

the F statistics of the correlation features, generally, the correlation features on inter-

channels (feature-dimension 43 to 54) have higher F-statistics than the correlation 

features on intra-channels (feature-dimension 1 to 42), which exhibits that the correlation 

features on inter-channel are better than the intra-channel features. 

 

Fig. 2-5 lists the F statistics and p-values of CF, HOMMS, HCFHOM, A. HCFCOM and 

C.A.HCFCOM features, extracted from 5000 covers and 5000 LSB matching stego-

images in grayscale images of which the LSBP hiding ratio is 1 or the maximum hiding 

ratio. Regarding individual features, Fig. 2-5 indicates that correlation features with the 

highest F statistics and lowest p-values are better than other features; HOMMS features 
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are not so good because the p-values of many HOMMS features are pretty high, 

indicating that the statistical significances of these HOMMS features are low and  the 

classification performance is the worst. 

  

 
 
Fig. 2-4 F statistics and p-values of correlations, HOMMS, and HCFCOM features in 
color images. 
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Fig. 2-5 F statistics and p-values of correlations, HOMMS, HCFHOM, A. HCFCOM and 
C.A.HCFCOM features in grayscale images. 
 

2.8 Comparison of Classification Performances 

Fig. 2-6 gives the top two classification accuracy (mean values and standard errors) on 

each feature set in color images under the LSBP hiding ratios of 1, 0.75, 0.5, and 0.25 

(Fig. 8a-d)).  Results show that, on the average, the set of correlation features (CF) 

outperforms HCFCOM and HOMMS; as the image complexity increases, the detection 

performances decrease; as the information-hiding ratio decreases, the diction 
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performances decreases. Especially the detection performance of HOMMS decreases 

obviously and the classification performance is not good while the parameter of image 

complexity β is bigger than one. 

 

Fig. 2-7 lists the best classifications in grayscale images under the different hiding ratios 

and different image complexities. Results show that the detection performance of CF is 

the best and the performance of HOMMS is the worst, which is consistent with the 

analysis of the statistical significance. On the average, the classification performances 

decrease as the image complexity increases. When the parameter of image complexity is 

bigger than 0.8 or the LSBP hiding ratio is 0.25, the performances are not good. It 

obviously demonstrates that the steganalysis of LSB matching steganography in 

grayscale images is still very challenging in the cases where the grayscale image consists 

of complicated texture or the hiding ratio is very low. 

 

In signal detection theory, a receiver operating characteristic (ROC) is a graphical plot of 

the sensitivity (fraction of true positives - TP) vs. 1-specificity (the fraction of false 

positives - FP) for a binary classifier system as its discrimination threshold is varied. The 

ROC curves under different image complexities in color images with the LSBP hiding 

ratios of 0.75 (I) and 0.5 (II) are shown in Fig. 2-8. Obviously, CF outperforms 

HCFCOM and HOMMS. The detection performances closely depend not only on the 

measure of information hiding ratio but also on the parameter of image complexity. As 

information hiding ratio decreases and image complexity increases, the detection 

performances decrease.    
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The legend for (a) and (b) 

The legend for (c) 

 
The legend for (d) 

 

(a) 
 

(b) 

(c) 
 

(d) 
 
Fig. 2-6 The best two classifications (mean values and standard errors) on each feature 
set (steganalysis of color LSB matching steganography). LSBP hiding ratios are 1(a), 
0.75(b), 0.5(c), and 0.25(d), respectively.  In the legends for (a), (b), (c), and (d), SVM-
CF denotes applying SVM to Correlation Features (CF), Adaboost-HCFCOM denotes 
applying Adaboost to HCFCOM features, and so on. 
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(a) (b) 

(c) (d) 
Fig. 2-7 The best classification (mean values and standard deviations) on each feature set 
(steganalysis of grayscale LSB matching steganography). The LSBP hiding ratios are 
1(a), 0.75(b), 0.5(c), and 0.25(d), respectively.  
 

2.9 Discussions 

All experiments show that the classification performances in color images are better than 

grayscale images. Fig. 2-4 reveals the statistical significances of the inter-channel 

correlation features are higher than intra-channel correlation features. In our point of 

view, on the average, there is stronger correlation in inter-channel than intra-channel 

which causes this result. Fig. 2-9(a) shows a color image and Fig. 2-9(b) presents the 

converted grayscale. Fig. 2-9(c), (e) and (g) are the joint probability of the red-green, red-

blue and green-blue channels of the color image. Fig. 2-9(d), (f) and (h) are the joint 
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probability of the adjacent pixels in the horizontal, vertical and diagonal directions of the 

grayscale image. The joint distribution of the grayscale is sparser, and the joint 

distribution of the color is more concentrated. The maximum values of the joint 

probability of the color are 0.012, 0.0030, and 0.0091, respectively, bigger than the 

maximum values of the grayscale.  

 

As the image complexity increases, the variation of the adjacent pixels increases, and the 

correlation decreases. Fig. 2-10 shows two grayscale images with low parameter of image 

complexity (Fig. 2-10(a)) and high parameter (Fig. 2-10(b)). Fig. 2-10(c), (e), and (g) 

give the joint distribution of the adjacent pixels of Fig. 2-10(a); Fig. 2-10(d), (f), and (h) 

give the joint distribution of the adjacent pixels of Fig.2-10(b). The correlation 

information of the adjacent pixels of Fig.2-10(a) is stronger than Fig.2-10(b).  It indicates 

that, with an increase of the parameter of image complexity, an increase of the variation 

of adjacent pixels results in decreasing both the detection performance and statistical 

significance.   

 

Table 2-1 The ranksum test of the image complexity of the covers and the stego-images. 

 

Shape parameter β < 0.4 0.4 ~ 0.6 0.6 ~ 0.8 0.8 ~ 1.0 1.0 ~ 1.2 > 1.2 

cover  766 1576 982 770 515 391 Sample 

number stego  636 1596 989 774 494 511 

p-value 0.0561 0.3319 0.5685 0.5273 0.8095 4.01e-008 Wilcoxon rank 

sum test HP 0 0 0 0 0 1 
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(I) 

(II) 
Fig. 2-8 ROC curves in the steganalysis of LSB matching steganography in color images 
at the LSBP hiding ratios of 0.75 (I) and 0.5 (II). X-label gives the False Positive (FP) 
and y-label gives the False Negative (FN). The shape parameter β at the bottom of each 
figure indicates the range of the image complexity under the experiment.  
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(a) A color sample 

 
(b) the grayscale converted from (a) 

 
(c) Joint probability of red-green channel,  

max-value: 0.012 

 
(d) Joint probability of adjacent pixels in 
horizontal direction, max-value: 0.0011 

 
(e) Joint probability of red-blue channel,  

max-value: 0.0030 

 
(f) Joint probability of adjacent pixels in vertical 

direction, max-value: 9.7e-004 

 
(g) Joint probability of blue-green channel,  

max-value: 0.0091 

 
(h) Joint probability of adjacent pixels in diagonal 

direction, max-value: 6.7e-004 
 
Fig. 2-9 Comparison of correlation in color and grayscale images. Left column is a color 
sample and the correlations of the inter-channels; right column is the grayscale sample 
converted from (a) and the correlation of the adjacent pixels. It indicates that the 
correlation information on inter-channel is higher than that on intra-channel by 
comparing the joint probabilities in left column and the joint probabilities in right 
column.  
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(a) GGD shape parameter: 0.5676 

 
(b)  GGD shape parameter: 0.9364  

 
(c) Joint probability of adjacent pixels in 
horizontal direction, max-value: 0.0012 

 
(d) Joint probability of adjacent pixels in 
horizontal direction, max-value: 9.4e-004 

 
(e) Joint probability of adjacent pixels in vertical 

direction, max-value: 0.0012 

 
(f) Joint probability of adjacent pixels in vertical 

direction, max-value: 9.5e-004 

 
(g) Joint probability of adjacent pixels in diagonal 

direction, max-value: 0.0013 

 
(h) Joint probability of adjacent pixels in diagonal 

direction, max-value: 8.9e-004 
 
Fig. 2-10 Comparison of correlations of low complexity and high complexity grayscales. 
Left column is a grayscale sample with low complexity and the correlations of the 
adjacent pixels; right column is the grayscale sample with high complexity and the 
correlation of the adjacent pixels. It indicates that the correlation information of the 
image with low complexity is higher than that of the image with high complexity.   
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Figures 2-6 and 2-7 show when shape parameter is bigger than 1.2, the classification 

suddenly improves (not so much). This seems to contradict with the conclusion that with 

increasing complexity detection ability decreases. Actually, this contradiction is caused 

by the different distribution of the image complexity of the covers and the stego-images 

in the case where the shape parameter is bigger than 1.2; it doesn’t contract with the 

conclusion. To further explain this contradiction, we study the affection on the image 

complexity caused by information-hiding. A non-parametric test, Wilcoxon rank sum test 

is performed for equal medians at the 0.05 significance level. The hypothesis is that two 

independent samples X and Y (X and Y can be different lengths) come from distributions 

with equal medians, and returns the p-value, the probability of observing the given result, 

or one more extreme, by chance if the null hypothesis ("medians are equal") is true. Table 

2-1 lists the sample-numbers of covers and steganograms in the grayscale image, the 

LSBP hiding ratio is 1. HP=0 indicates that the null hypothesis ("medians are equal") 

cannot be rejected at the 5% level. HP=1 indicates that the null hypothesis can be rejected 

at the 5% level. Generally, the LSB matching information-hiding will increase the image 

complexity, but not so much. In table 2-1, there are 766 cover samples and 636 stego-

samples in the category of β < 0.4. It means that with information-hiding the image 

complexity increases, there are 130 stego- samples and the image complexity is bigger 

than 0.4, although the original image complexity is smaller than 0.4. Similarly, 120 

images shift to the category of β > 1.2 from the category of β < 1.2 with the information-

hiding. Wilcoxon rank sum test indicates that the shifting of the image complexity with 

the information-hiding don’t change the distribution in the categories of β < 1.2, but the 

distribution is changed in the category of β > 1.2. Fig. 2-11 shows the distribution 
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difference of the covers (on the left) and the stego-images (on the right) in the categories 

of β > 1.2 (on the upper) and 1 < β < 1.2 (on the lower) in the grayscale imaged, the 

LSBP hiding ratio is 1. Table 2-1 and Fig. 2-11 show that, it is the distribution difference 

that results in the contraction in Figures 2-6 and 2-7. Again, it indicates that the detection 

performance depends on the image complexity.  Fig. 2-12 is the boxplot of the image 

complexity of the covers and the stego-images (grayscale), the LSBP hiding ratio is 1. It 

shows that the information-hiding will increase the image complexity, but the increase is 

small. In our experiments, when the shape parameter is smaller than 1.2, the information-

hiding didn’t change the distribution of the image complexity, but it did change the 

distribution of the image complexity in the case where the shape parameter is bigger than 

1.2, which results in the contradiction in the results shown in figures 2-6 and 2-7.  

 
Fig. 2-11 The distribution of the image complexity of the covers and the stego-images 

(grayscale) in the categories of β > 1.2 and β in [1, 1.2].The LSBP hiding ratio is 1. 
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Fig. 2-12 The boxplot of the image complexity of the covers and the stego-images 
(grayscale). The LSBP hiding ratio is 1. 
 
 

2.10 Conclusions 

Information-hiding ratio is a well-known reference to evaluation of the performance of 

steganalysis. However, few publications clearly demonstrate the relation of image 

complexity and detection performance.  In this chapter, we introduce the parameter of 

image complexity to the field of steganalysis and utilize the shape parameter of 

Generalized Gaussian Distribution (GGD) in the wavelet domain to measure the image 

complexity. To detect the presence of hidden data in LSB matching steganography, we 

present different correlation features. Comparing to other well-known features of 

HCFCOM and HOMMS in color images, and HCFHOM, HOMMS, A.HCFCOM, and 

C.A.HCFCOM in grayscale images, overall, our feature set performs the best. 

Experimental results show that the statistical significance of features and the detection 
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performance closely depend not only on the information-hiding ratio but also on the 

image complexity. While the hiding ratio decreases and the image complexity increases, 

the significance and detection performance decrease. Meanwhile, the steganalysis of LSB 

matching steganography in grayscale images is still very challenging in the cases of 

complicated textures or low hiding ratios. 

 

There is high correlation of adjacent pixels. Based on the features presented in this 

chapter, we also successfully applied the method to detecting the information-hiding 

behaviors in other space-hiding steganogrphic systems [Liu, Sung and Ribeiro, 2005; Liu, 

Sung and Xu, 2005] and the experimental results also support the hypothesis that the 

information-hiding in space-hiding steganographic systems affect the high correlation. 

 

Feature selection is a general problem. This chapter did not cope with the issue of 

optimizing the feature set, which will be studied in the next chapter as well as the 

improvement of the detection of LSB matching steganography in grayscale images.  
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CHAPTER 3: IMPROVED DETECTION OF LSB 

MATCHING IN GRAYSCALE IMAGES 

3.1 Introduction 

Many detection methods in steganalysis are based on feature mining and pattern 

classification techniques. Regarding feature mining, besides feature extraction, another 

general problem is feature selection. Analysis of variance (ANOVA) is utilized to choose 

good image quality metrics [Avcibas et al., 2003]. In detail, the higher the F statistic, the 

lower the p value, and the better the feature is. This feature selection is simple and runs 

fast. It is good in evaluating the statistical significance of the individual feature, but it 

doesn't consider the interaction of the features, and probably, the final feature set is not 

optimal. Otherwise there has been little research that deals with the feature selection 

problem with specific respect to steganalysis. 

 

We introduced the shape parameter of Generalized Gaussian Distribution (GGD) in the 

wavelet domain to measure the image complexity and evaluate the steganalysis 

performance [Liu, Sung, Xu, Ribeiro, 2006]; although the method proposed therein is 

successful in detecting LSB matching steganography in color images and outperforms 

other well-known methods, its performance is not so good in grayscale images, which is 

generally more difficult and shown in chapter 2. 

 

To improve the performance in detecting LSB matching steganography in grayscale 

images, based on our previous work [Liu and Sung, 2007], in addition to correlation 
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features described in the previous chapter, four new types of features are designed and a 

Dynamic Evolving Neural Fuzzy Inference System (DENFIS) [Kasabov and Song, 2002; 

Kasabov, 2002] is introduced in this chapter. We also adopt the feature selection of 

Support Vector Machine Recursive Feature Elimination (SVMRFE) [Guyon et al., 2002; 

Liu and Sung, 2007] to choose the features in our steganalysis. 

 

Comparing against other well-known methods in terms of steganalysis performance, the 

new feature set performs the best. DENFIS is superior to other compared learning 

classifiers including SVM and adaboost. SVMRFE outperforms DENFIS based 

sequential forward selection and statistical significance based feature selection like T-test.  

 

Our experimental results also indicate that image complexity is an important parameter to 

evaluation of the detection performance. At a certain information-hiding ratio, it is much 

more difficult to detect the information-hiding behavior in high image complexity than 

that in low complexity. 

 

3.2 Feature Extraction 

3.2.1 Entropy and High Order Statistics of the Histogram of the Nearest Neighbors 

As shown in Fig. 2-2, there is high correlation of the adjacent pixels in ordinary images 

and we have a hypothesis that the information-hiding behavior will affect the joint 

distribution of the adjacent pixels. Based on this hypothesis, we consider the statistics of 

the histogram of the nearest neighbors. In chapter 2, Fig. 2-2 just shows a 2-D case of the 
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nearest neighbors. Here we consider a 3-D case. The grayscale value at the point (i, j) is 

represented by x, the grayscale value at the point (i+1, j) is y, and the grayscale value at 

the point (i, j+1) is z. The variable H(x, y, z) denotes the occurrence of the pair (x, y, z) of 

the image, or the histogram of the nearest neighbors (NNH). 

 

The entropy of NNH (NNH_E) is calculated as follows: 

     NNH_E = ∑−
HH

ρρ 2log                                                                                (3-1)  

Where 
H

ρ denotes the distribution density of the NNH. The symbol Hσ denotes the 

standard deviation of H (or NNH). The rth high order statistics of NNH (NNH_HOS) is 

given as: 

  NNH_HOS(r) = 

1 1 1 1 1 1

3 3
0 0 0 0 0 0
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N N N N N N

x y z x y z
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= = = = = =

⎛ ⎞
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⎜ ⎟
⎝ ⎠

∑∑∑ ∑∑∑
                                    (3-2) 

Where N is the number of possible gray scales of the image, e.g., for an 8-bit grayscale 

image, N = 256. 

 

3.2.2 Probabilities of the Equal Neighbors  

Besides the features on the histogram of the nearest neighbors, the probabilities of the 

equal neighbors are extracted. The structures of the equal neighbors are shown in Fig. 3-1, 

where a represents the pixel value. Equal neighbors mean that the pixel values in the 

structure equal to each other.  
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a a a   a   a a  a a a  

a a a  a a a  a a      

a a a   a          

               

a a a  a a a  a a a  a   

  a   a   a    a a a 

               

 a     a  a a  a   a 

a a a  a a a   a  a a  a 

              a 
 

Fig. 3-1 The structures of the equal neighbors. 

 

3.3 Introduction to DENFIS   

Neuron-fuzzy inference systems consist of a set of rules and an inference method that are 

embodied or combined with a connectionist structure for better adaptation. Evolving 

neuron-fuzzy inference systems are such systems, where both the knowledge and the 

mechanism evolve and change in time, with more examples presented to the system 

[Kasabov 2002]. The dynamic evolving neuron-fuzzy inference system, or DENFIS 

[Kasabov and Song, 2002], uses the Takagi-Sugeno type of fuzzy inference method 

[Takagi and Sugeno, 1985]. The inference used in DENFIS is performed on m fuzzy rules 

indicated as follows: 

                   If x1 is R11 and x2 is R12 and … and xq is R1q, then y is f1(x1, x2, …, xq) 

                   If x1 is R21 and x2 is R22 and … and xq is R2q, then y is f2(x1, x2, …, xq) 

                   … … 

                   If x1 is Rm1 and x2 is Rm2 and … and xq is Rmq, then y is fm(x1, x2, …, xq) 
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Where “xj is Rij”, i = 1,2, …, m; j = 1,2,…, q, are m × q fuzzy propositions that form m 

antecedents for m fuzzy rules respectively; xj, j = 1, 2, … , q, are antecedent variables 

defined over universes of discourse Xj, j = 1, 2, … , q, and Rij, i = 1, 2, …, m;  j = 1, 

2, … , q are fuzzy sets defined by their fuzzy membership functions: Xj [0,1], i = 1, 

2, …, m;  j = 1, 2, …, q. In the consequent parts of the fuzzy rules, y is the consequent 

variable, and crisp functions fi, i = 1, 2, … , m, are employed. 

 

In the DENFIS model, all fuzzy membership functions are triangular type functions 

defined by the three parameters, a, b, and c, as given below: 

    

 µ(x) = mf(x,a,b,c) = max(min((x-a)/(b-a), (c-x)/(c-b)), 0)                                  (3-3) 

                                

Where b is the value of the cluster centre on the x dimension, a = b – d × Dthr, d = 1.2 ~ 

2. The threshold value, Dthr, is a clustering parameter. 

 

For an input vector x0 = [x1
0  x2

0  … xq
0], the result of the inference, y0, or the output of the 

system, is the weighted average of each rule’s output indicated as follows: 

    y0 = 
∑

∑

=

=
m

i
i

m

i
qii

w

xxxfw

1

1

00
2

0
1 ),...,,(

                                                                      (3-4) 

where, ∏
=

===
q

j
jjii qjmixRw

1

0 .,...,2,1;,...,2,1);(  



    42

 

In the DENFIS on-line model, the first-order Takagi-Sugeno type fuzzy rules are 

employed. In the DENFIS off-line models, the first-order and an extended high-order 

Takagi-Sugeno inference engines are used, corresponding to a linear model and an MLP-

based model, respectively. The experiments indicate that the DENFIS with MLP-based 

model has the best prediction performance. The details of the DENFIS off-line learning 

process is presented in the reference [Kasabov, 2002].  

 

3.4 Feature Selection in Steganalysis 

To detect the information-hiding behaviors in steganography, many articles proposed 

different features or measures. In steganalysis, feature selection should be a general 

problem; to our knowledge, however, few publications cope with this issue except 

Avcibas et al. presented a universal steganalysis based on image quality metrics and 

utilized analysis of variance (ANOVA) to choose the good measures [Avcibas et al., 

2003]. Essentially, this feature selection belongs to filtering approach and the final 

feature set may not be optimal. 

 

Generally, feature selection can be grouped into three categories: filtering, wrapper 

methods and embedded methods. Filter methods select feature subsets independently 

from the learning classifiers and do not incorporate learning [Xu and Chen, 2005; Pvlidis 

and Noble, 2001]. A weakness of filtering methods is that they just consider the 

individual feature in isolation and ignore the possible interaction of features among them. 

Yet, the combination of these features may have a combined effect that does not 
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necessarily follow from the individual performance of features in the group. If there is a 

limit on the number of features to be chosen, we may not be able to include all 

informative features.  

 

Wrapper methods wrap around a particular learning algorithm that can assess the selected 

feature subsets in terms of the estimated classification errors and then build the final the 

final classifiers [Inza et al., 2002]. One of the well-known methods is Support Vector 

Machine Recursive Feature Elimination (SVMRFE), which refines the optimum feature 

set by using SVM in a wrapper approach to address the problem of gene selection in the 

analysis of microarray data [Guyon et al., 2002]. Additionally, Sequential Forward 

Selection (SFS) is a greedy search algorithm in wrapper methods. To deal with the issue 

of feature selection in our steganalysis, we compare these three feature selections: 

DENFIS based SFS (DENFIS-SFS), SVMRFE, and T-test, a filtering feature selection 

which is similar to the ANOVA approach in steganalysis [Avcibas et al., 2003]. 

 

3.5 Experiments and Results 

3.5.1 Experimental Setup   

The original images in our experiments are 5000 TIFF raw format digital pictures, taken 

in USA during 2003 to 2005. These images are 24-bit, 640×480 pixels, lossless true color 

and never compressed. As mentioned in chapter 2, we cropped the original images into 

256×256 pixels in order to get rid of the low complexity parts of the images. The cropped 

color images are converted into grayscales and LSB matching stego-images are produced 
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by hiding data in these grayscales. The hiding ratio (the ratio of the file size of the hidden 

data to the file size of the cover image) is 12.5%. The hidden data in any two images are 

different.  

 

We categorize the grayscale images (covers and stego-images) according to the image 

complexity which is measured by the shape parameter β of the GGD of the HH wavelet 

sub-band coefficients. Fig. 3-2 lists some cover samples with different shape parameters 

in our experiments. 

 

3.5.2 Feature Extraction and Comparison   

The following features are extracted: 

1. Shape parameter β of the GGD of the HH wavelet sub-band that measures the image 

complexity. 

2. Entropy of the histogram of the nearest neighbors, NNH_E, defined in (3-1). 

3. The high order statistics of the histogram of the nearest neighbors, NNH_HOS(r) in 

(3-2), and r is set from 3 to 22, total 20 high order statistics.  

4. Probabilities of the equal neighbors (PEN), described in 3.2.2. 

5. Correlations features defined in chapter 2: C1 in (2-3), C(k,l) in (2-4), C2 in (2-6), 

CH(l) in (2-7),  and CE(t; k,l) in (2-10).  

We set the following lag distance to k and l in C(k,l) and get 14 features: 

1) k = 0, l = 1, 2, 3, and 4; l = 0, k = 1, 2, 3, and 4. 

2) k = 1, l = 1; k = 2, l = 2; k = 3, l = 3; k = 4 and l = 4. 

3) k = 1, l = 2; k = 2, l = 1. 
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0.2616 0.2672 0.2966 

 
0.3156 0.4041 

 
0.4130 0.4226 0.4450 

 
0.5010 0.5253 

 
0.5535 0.5607 0.5780 

 
0.6171 0.6979 

 
0.7870 0.7990 0.8314 

 
0.8828 0.9883 

 
1.0827 1.0851 1.0855 

 
1.0896 1.2124 

 
1.2138 1.3816 1.4121 1.6856 1.8401 

 

Fig. 3-2 Some cover samples (scaled) and the shape parameters.  
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In (2-7), l is set to 1, 2, 3, and 4.  In (2-10), we set the following lag distances to k and l in 

CE(t; k,l) and get following pairs: 

CE(t; 0,1), CE(t; 0,2), CE(t;1,0), CE(t; 2,0), CE(t; 1,1), CE(t; 1,2), and CE(t; 2,1).  t is set 

1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5. 

We record the fifth type of correlation features as CF; types 1 to 5 as EHPCC (Entropy, 

High order statistics, Probabilities of the equal neighbors, Correlation features, and 

Complexity). 

 

To compare EHPCC with other well-known features, the Histogram Characteristic 

Function Center of Mass (HCFCOM) [Harmsen and Pearlman, 2003] is extracted 

because the hiding process of LSB matching steganography can be modeled in the 

context of additive noise. We extend the HCFCOM to the high order moments. 

HCFHOM stands for HCF center of mass High Order Moments; HCFHOM (r) denotes 

the rth order statistics. In our experiments, the HCFHOM feature set consists of 

HCFCOM and HCFHOM(r) (r = 2, 3, and 4). We also compare Adjacency HCFCOM 

(A.HCFCOM) and Calibrated Adjacency HCFCOM (C.A.HCFCOM) proposed by Ker 

[Ker, 2005]. Additionally, Farid and Lyu [Lyu and Farid, 2004, 2005] presented an 

approach to detecting hidden messages in images by building High-Order Moment 

statistics in Multi-Scale decomposition domain (we call these features HOMMS), which 

consists of 72-dimension features in grayscale images.   

 

All the features mentioned above are listed in table 3-1. 
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Table 3-1 Proposed and compared features in our experiments. 

Feature set Description of the features The source 
The number 

of Features 

Entropy of NNH 

( NNH_E ) 
Defined in (3-1) 1 

High order statistics of NNH 

( NNH-HOS (r), r = 3, 4, …, 22 ) 
Defined in (3-2) 20 

Probabilities of Equal Neighbors 

( PEN ) 

Described in 3.2.2 

Fig. 3-1 presents the structures of the equal neighbors. 
13 

Correlation Features 

( CF ) 

C1 defined in (2-3); 

C(k, l) defined in (2-4): 

C(0, 1), C(0, 2), C(0, 3), C(0, 4), C(1,0), C(2, 0), C(3, 

0), C(4,0), C(1,1), C(2, 2), C(3, 3), C(4, 4), C(1, 2), 

C(2, 1); 

C2 defined in (2-6); 

CH(l) in (2-7): 

CH(1),  CH(2), CH(3),  CH(4); 

CE(t; k,l) in (2-10): 

CE(t; 0,1), CE(t; 0,2), CE(t;1,0), CE(t; 2,0), CE(t; 1,1), 

CE(t; 1,2), and CE(t; 2,1). 

t is set 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5. 

83 

EHPCC 

complexity measure 
The shape parameter β in (2-1) 

[Sharifi and Leon-Garcia, 1995; Liu et al. 2006] 
1 

HCFHOM 

HCFCOM 

and the high order statistics 

HCFHOM(r) 

( r = 2, 3, 4) 

[Harmsen and Pearlman, 2003] 4 

A.HCFCOM Adjacent HCFCOM [Ker, 2005] 1 

C.A.HCFCOM Calibrated adjacent HCFCOM [Ker, 2005] 1 

HOMMS 
High-order moment statistics in 

multi-scale decomposition domain 
[Lyu and Farid, 2004 and 2005] 72 
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Fig. 3-3 lists the F statistics and p-values of NNH_E and NNH_HOS, shape parameter β 

and correlation features, Probabilities of the equal neighbors, HOMMS features, 

HCFHOM features, A. HCFCOM and C.A. HCFCOM features, extracted from the 5000 

grayscale covers and the 5000 LSB matching stego-images. Fig. 3-3 indicates that, 

regarding the statistical significance, on the average, NNH-E, NNH-HOS, correlation 

features, and probabilities of the equal neighbors with high F statistics and very small p-

values are better than HCFHOM, A. HCFCOM and C.A.HCFCOM features; and 

HOMMS features are not good because the p-values of most HOMMS features are high 

and the F statistics are small, it implies that the discrimination ability of HOMMS 

features is very weak.  Fig. 3-3 also shows that the F statistic of the shape parameter β is 

small and the p-value is close to 0, which means that the information-hiding changes the 

image complexity of the original cover, but the affection is very weak. 

 

 

Fig. 3-3 F statistics and p-values of NNH-E (feature dimension 1 on the upper left), 
NNH-HOS (feature dimension 2 to 21 on the upper left), shape parameter β (feature 
dimension 1 on the middle left), correlation features (feature dimension 2 to 84 on the 
middle left), probabilities of equal neighbors, HOMMS,  HCFHOM , A. HCFCOM, and 
C.A. HCFCOM features. 
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3.5.3 Detection Performance on Feature Sets   

To compare the detection performances on these feature sets with different classifiers, 

besides DENFIS, we apply the following classifiers to each feature sets. These classifiers 

are Naive Bayes Classifier (NBC), Support Vector Machines (SVM), Quadratic Bayes 

Normal Classifier (QDC), and adaboost that produces a classifier composed from a set of 

weak rules [Friedman, Hastie and Tibshirani, 2000;  Heijden et al., 2004; Vapnik, 1998; 

Schlesinger and Hlavac, 2002].    

 

Thirty experiments are done on each feature set using each classifier. In each experiment, 

training sets are randomly chosen and the remaining sets are tested. The testing results 

consist of true positive (TP), true negative (TN), false positive (FP), and false negative 

(FN). In each category of the image complexity, the number of cover samples is 

approximately equal to the number of stego-samples, so the testing accuracy is calculated 

by (TP+TN) / (TP+TN+FP+FN). The average testing accuracy and the standard error of 

the thirty experiments are compared.  Table 3-2 lists the testing results (mean values and 

standard deviations) on each feature set with the use of SVM, ADABOOST, NBC, and 

QDC. In each category of image complexity, the best testing accuracy is in bold. In the 

five categories of image complexity, all the highest testing results happen to the feature 

set of EHPCC. The results indicate that EHPCC is superior to its subset CF; CF is better 

than HCFHOM, A.HCFCOM, and C.A.HCFCOM; the detection performance of 

HOMMS is not good. The results in table 3-2 are consistent with the demonstration of the 

statistical significance in Fig. 3-3. Regarding the detection performance of these four 

learning classifiers, SVM and adaboost are better than NBC and QDC. 
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Since EPHCC is the best feature set, we compare the detection performance by applying 

DENFIS to EPHCC against the best testing values in table 3-2; the results are shown in 

table 3-3. On the average, DENFIS is better than SVM and adaboost. 

 

3.5.4 Comparison of Feature Selections 

Although EHPCC has the best detection performance, Fig. 3-3 shows that not all the 

features in EHPCC are good, not all the elements of HOMMS are useless. If we combine 

all the features listed in table 3-1, how to choose the features? 

 

Since tables 3-2 and 3-3 show that DENFIS is better than SVM and adaboost and 

Sequential Forward Selection (SFS) is a classical approach in wrapper feature selections, 

we compare DENFIS based SFS (DENFIS-SFS) with SVMRFE and T-test. Fig. 3-4 plots 

the cross-validation detection performances under the feature dimension one to forty with 

the application of DENFIS and SVM to the feature selections: SVMRFE, DENFIS-SFS, 

and T-test. It shows that, while β > 0.8, by applying SVM to all the feature sets from 

feature dimension one to forty, it fails to detect the steganography; on the contrary, 

DENFIS works well. Fig. 3-4 indicates that, regarding the testing accuracy and the 

stability spanning over different image complexity, the classifier DENFIS outperforms 

SVM; the feature selection SVMRFE is superior to DENFIS-SFS and DENFIS-SFS is 

better than T-test; the combination of DENFIS with SVMRFE achieves the best detection 

performance. 
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Table 3-2 Testing results on the feature sets (mean value ± standard deviation, %). In 

each category of image complexity, the highest test accuracy is in bold.  As β > 0.8, SVM 

fails to classify the HOMMS feature set. 

 
                            Classifier 

              Feature set 

β                   and testing accuracy 

SVM ADABOOST NBC QDC 

EHPCC 91.8 ± 0.9 89.0 ± 1.0 76.0 ± 1.9 70.3 ± 1.8 

CF 85.9 ± 1.0 82.0 ± 1.2 77.0 ± 2.1 80.9 ± 1.7 

HCFHOM 60.9 ± 1.3 57.6 ± 1.5 57.5 ± 1.5 53.4 ± 1.0 

HOMMS 53.6 ± 1.0 50.6 ± 2.0 46.9 ± 1.7 42.1 ± 1.4 

C.A.HCFCOM 55.3 ± 0.6 54.3 ± 1.1 53.8 ± 1.1 55.4 ± 1.1 

< 0.4 

A.HCFCOM 55.6 ± 0.9 55.4 ± 1.8 54.7 ± 1.4 55.5 ± 1.1 

EHPCC 86.2  ± 0.6 79.9 ± 1.0 66.8 ± 0.9 65.1 ± 0.8 

CF 77.6 ± 0.4 72.2 ± 1.0 67.6 ± 1.3 70.6 ± 1.3 

HCFHOM 58.4 ± 0.6 56.6 ± 1.1 56.1 ± 0.9 54.5 ± 0.6 

HOMMS 48.8 ± 1.6 47.6 ± 1.0 47.1 ± 0.8 44.0 ± 1.5 

C.A.HCFCOM 58.1 ± 0.7 57.0 ± 1.5 57.8 ± 1.1 57.9 ± 0.8 

0.4-0.6 

A.HCFCOM 57.3 ± 0.6 56.6 ± 0.9 56.8 ± 0.7 56.6 ± 0.6 

EHPCC 73.7 ± 1.3 69.4 ± 1.2 61.4 ± 1.4 62.8 ± 0.9 

CF 66.7 ± 0.7 63.9 ± 1.2 62.1 ± 1.1 62.3 ± 1.2 

HCFHOM 57.6 ± 0.9 55.3 ± 1.1 54.2 ± 1.3 53.1 ± 0.7 

HOMMS 47.3 ± 0.7 43.7 ± 1.3 45.4 ± 1.2 40.6 ± 2.4 

C.A.HCFCOM 56.0 ± 1.1 56.4 ± 1.0 55.8 ± 1.0 56.2 ± 0.8 

0.6-0.8 

A.HCFCOM 56.6 ± 0.6 54.9 ± 1.2 55.2 ± 1.1 55.5 ± 1.2 

EHPCC 63.7 ± 1.0 63.0 ± 1.4 56.5 ± 1.2 61.4 ± 1.0 

CF 60.0 ± 1.0 57.4 ± 1.8 57.8 ± 1.5 57.5 ± 1.6 

HCFHOM 53.9 ± 1.2 52.0 ± 1.6 53.2 ± 1.4 51.7 ± 0.6 

HOMMS / 42.0 ± 1.5 44.5 ± 0.8 41.6 ± 2.8 

C.A.HCFCOM 52.4 ± 0.7 52.6 ± 1.5 52.1 ± 1.3 53.1 ± 1.2 

0.8-1 

A.HCFCOM 53.3 ± 1.0 50.3 ± 1.3 51.8 ± 1.2 50.8 ± 1.6 

EHPCC 54.6 ± 0.2 61.3 ± 1.2 58.0 ± 1.2 60.0 ± 0.5 

CF 59.7 ± 1.7 58.9 ± 2.3 57.1 ± 1.5 58.4 ± 1.3 

HCFHOM 54.4 ± 0.8 52.7 ± 1.6 51.9 ± 1.7 53.2 ± 1.8 

HOMMS / 46.7 ± 1.8 50.4 ± 1.4 43.1 ± 1.5 

C.A.HCFCOM 54.7 ± 0.5 52.7 ± 1.7 53.1 ± 1.4 54.4 ± 0.9 

>1 

A.HCFCOM 54.3 ± 0.3 51.2 ± 1.6 51.6 ± 2.0 53.5 ± 1.4 
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Table 3-3 Applying DENFIS to EHPCC vs. the best results in Table 2. 

β DENFIS BEST TESTING IN TABLE 2 

< 0.4 93.2 ± 1.1 91.8 ± 0.9 
0.4 – 0.6 87.7 ± 1.2 86.2 ± 0.6 
0.6 -0.8 72.6 ± 1.6 73.7 ± 1.3 
0.8 - 1 62.5 ± 2.2 63.7 ± 1.0 

> 1 62.8 ± 1.8 61.3 ± 1.2 
 

 

 

 

Fig. 3-4 The detection performance with the use of SVM and DENFIS to the feature 
selections: SVMRFE, DENFIS-SFS, and T-test. In the lower subfigures (0.8 < β < 1 and 
1.0 < β), SVM fails to classify the testing sets of covers and stego-images. 
 



    53

3.6 Conclusions   

In this chapter, a scheme of detecting LSB matching steganography in grayscale images 

is presented based on feature mining and pattern recognition techniques. Five types of 

features are extracted and several learning classifiers are applied. Experimental results 

indicate that the proposed feature set is better that other well-known feature sets 

including HCFHOM, HOMMS, A.HCFCOM, and C.A.HCFCOM. DENFIS is superior 

to adaboost, SVM, NBC, and QDC. To deal with the issue of feature selection in 

steganalysis, we compared three feature selections: SVMRFE, DENFIS-SFS, and T-test. 

SVMRFE performs the best. The learning classifier DENFIS combining with the feature 

selection of SVMRFE achieves the best detection performance.   

 

The experimental results also show that image complexity is an important parameter for 

evaluating the steganalysis performance. At a certain information-hiding ratio, the 

detection performance is highly different in different image complexity. It is still very 

challenging in detecting the information-hiding behavior in the grayscale images with 

high complexity.    
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CHAPTER 4: STEGANALYSIS OF TRANSFORM-HIDING 

STEGANOGRAPHY 

4.1 Introduction 

Transform-hiding steganography hides data in the coefficients of the transform domain 

such as DCT, DWT or DFT. JPEG image is one of the most popular media in Internet 

and it is easily used to carry hidden data and many information-hiding techniques/tools 

embed data in JPEG images; therefore, it’s important for many purposes to design a 

reliable algorithm to decide whether a JPEG image found on the Internet carries hidden 

data or not.  

 

There are a few methods for detecting JPEG steganography. HCFCOM and HOMMS are 

two well-known universal detectors which are described in the previous chapters, and 

they are suitable in detecting the information-hiding in JPEG images. Additionally, 

Fridrich et al. [Fridrich et al., 2003] presented a method to estimate the cover-image 

histogram from the stego-image. Another new feature-based steganalytic method for 

JPEG images was proposed and the features are calculated as an L1 norm of the 

difference between a specific macroscopic functional calculated from the stego-image 

and the same functional obtained from a decompressed, cropped, and recompressed 

stego-image [Fridrich, 2004]. Harmsen and Pearlman [Harmsen and Pearlman, 2004] 

implemented a detection scheme using only the indices of the quantized DCT coefficients 

in JPEG images.  
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In this chapter, a steganalysis scheme for JPEG images using polynomial fitting is 

presented. Many stegnographic systems in JPEG images modify the quantized DCT 

coefficients; as a result, the marginal density of the coefficients is affected. Based on this 

observation and concern, polynomial fitting is designed to fit the logarithmic transform 

domain of the marginal density, and the errors between the histogram and the fitting 

curve are extracted as the detector. Classification techniques are utilized to recognize the 

different types of the steganograms and the covers. In this chapter, an evolutionary neuro-

fuzzy inference system is introduced to estimate the information-hiding length in the 

steganograms based on the detector. Experimental results indicate that this method is 

very successful in detecting the information-hiding types and the information-hiding 

length in the imbalance multi-class environment which consists of plenty of covers, and 

the JPEG steganograms produced by CryptoBola, F5, and JPHS information-hiding 

systems. 

 

In the following part, JPEG compression and the information-hiding is introduced, and 

the detector of the errors of the Generalized Gaussian Distribution (GGD) model of the 

quantized DCT coefficients and the polynomial fitting is designed [Liu, Sung, Xu and 

Venkataramana, 2006], then the experiments and the results are demonstrated. 

 

4.2 JPEG Compression and Information-hiding 

 

JPEG is the image compression standard developed by the Joint Photographic Experts 

Group (official name ITU-T T.81, ISO/IEC IS 10918-1).  In practice, JPEG is most often 
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used to compress 24-bit color or 8-bit grayscale images. In 24-bit color images, each 

numeric value that describes the color of a pixel in a 24-bit color image actually breaks 

down into three values that define the exact color. There are two ways to define this set of 

three color values. Most of the computer-literate are familiar with the "RGB" color 

description scheme, where each pixel value is a set of by three numbers giving the red, 

green, and blue color value. For example, in RGB, each 24-bit value breaks down into 

three 8-bit values, each giving the intensity of red, green, and blue in a scale from 0 to 

255. In the "luminance-chrominance" or YCbCr scheme, used in traditional US analog 

color TV, a pixel value is given by its grayscale brightness level, or "luminance", and by 

a color value, or "chrominance". Chrominance actually amounts to two values, one that 

describes the "hue", or specific color within a linear range of colors, and the other that 

describes the "saturation", or intensity of the color. The luminance information contains 

most of the detail perceived by the human eye, while the overlying chrominance color 

information can be fuzzy without causing any serious image degradation. JPEG 

compression applies luminance-chrominance scheme because it offers greater 

possibilities for compression. For example, compression can be increased by only 

sampling every other horizontal and vertical pixel in a chrominance block, which cuts the 

number of chrominance bits to a fourth. This is known as "horizontal and vertical 

decimation" using a factor of 2, and results in one decimated 8x8 chrominance block for 

every four luminance blocks. JPEG divides up each of the three YCbCr color planes into 

8 by 8 pixel blocks, and then calculates the discrete cosine transform (DCT) of each 

block. A quantizer rounds off the DCT coefficients according to the quantization matrix. 

This step produces the "lossy" nature of JPEG, but allows for large compression ratios. 
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JPEG compression technique uses a variable length code on these coefficients, and then 

writes the compressed data stream to an output file. 

 

Generally, many steganographic systems in JPEG images implement information-hiding 

by modifying the quantized DCT coefficients, e.g., JPEG-JSteg sequentially replaces the 

least-significant bit of DCT coefficients with the message’s data, but it is easy to detect 

[Zhang and Ping, 2003]. Instead of replacing the least-significant bit of DCT coefficient 

with message data, F5 decrements its absolute value in a process called matrix encoding 

[Westfeld, 2001].  

 

4.3 Detector of Errors of Polynomial Fitting (EPF) 

 

As mentioned in chapter 2, several papers describe the Generalized Gaussian Distribution 

(GGD) model in transform domains, such as DCT, DFT, or DWT [Sharifi and Leon-

Garcia, 1995]. The marginal density of DCT coefficients may be achieved by adaptively 

varying two parameters of the GGD, which is defined as follows: 

})/|(|exp{
)/1(2

),;( βα
βα

ββαρ xx −
Γ

=                                                                    (4-1) 

Where )(•Γ  is the gamma function, α models the width of the probability distribution 

function (PDF) peak and β is inversely proportional to the decreasing rate of the peak. α 

is referred to as the scale parameter while β is called the shape parameter. The GGD 

model contains the Gaussian and Laplacian PDFs as special cases, using β = 2 and β = 1, 

respectively.  
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For the quantized JPEG DCT coefficients, the values of x in (1) are the discrete values, 0, 

1, -1, 2, -2, 3, -3, etc. The marginal density of the quantized JPEG DCT coefficients, h(x), 

can be approximately modeled as follows: 

h(x)  = })/|(|exp{
)/1(2

βα
βα

β x−
Γ ,  x = 0, 1, -1, 2, -2, …                                        (4-2) 

Applying logarithmic to (2), in the case of x > 0,  
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When a is set to 0, f(x) can be approximately represented by the nth polynomial series. 

Considering the computational complexity of the Taylor series, we denote )(xpn  as the 

nth polynomial that fits function f(x) best in a least-square sense.  

)1()(...)2()1()( 1 ++•++•+•= − npxnpxpxpxp nn
n                                   (4-5) 

The error at any value for x is defined as: 

)()()( xpxfxR nn −=                                                                                         (4-6) 

We call the measure ( )nR x  Errors of Polynomial Fitting (EPF).   

 

Generally, most JPEG steganographic systems modify the quantized DCT coefficients. It 

may affect the marginal density of the DCT coefficients and the distribution may deviate 

from the GGD. As a result, some EPF errors of the steganograms will differ from those of 
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the untouched JPEG images. Hence, the presence of hidden data in these JPEG 

steganography may be caught according to the statistics of the ( )nR x .  

 

Fig. 4-1(a) lists a JPEG cover of 18232 bytes and Fig. 4-1(b) shows the CryptoBola JPEG 

steganogram of 18202 bytes wherein a text file of 682 bytes is hidden. The hidden text 

file is not shown here. Fig. 4-1(c) shows the logarithmic of the marginal densities of the 

quantized DCT coefficients and Fig 4-1(d) demonstrates the EPF. Fig. 4-1(c) indicates 

that the marginal densities of the DCT coefficients are different between the cover and 

the steganogram, which results in the difference of the EPF (Fig. 4-1(d)). 

 

(a) cover 

 

(b) CryptoBola steganogram 

 

(c) 

 

(d)  

Fig. 4-1 A JPEG cover (a), the steganogram (b), the logarithmic of the histogram of the 
DCT coefficients (c), and the EPFs (d). 
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4.4 Experimental Results 

The original images are TIFF raw format digital pictures taken during 2003 to 2005. 

These images are 24-bit, 640×480 pixels, lossless true color and never compressed. We 

cropped the original images into 256×256 pixels in order to get rid of the low complexity 

parts. After that, we converted the cropped images into JPEG and the quality is 75 (the 

default quality). These JPEG images as well as other JPEG images collected during 2002 

to 2003 are the original covers. The following three different information hiding 

techniques are adopted: 

1. CryptoBola JPEG. It determines which parts (bits) of the JPEG-encoded data play 

the least significant role in the reproduction of the image, and replace those bits 

with the bits of the cipher text. CryptoBola is available at 

http://www.cryptobola.com/. 

2. F5 algorithm [Westfeld, 2001]. This algorithm F5 withstands visual and statistical 

attacks, yet it still offers a large steganographic capacity. F5 implements matrix 

encoding to improve the efficiency of embedding. Thus it reduces the number of 

necessary changes. F5 employs permutative straddling to uniformly spread out the 

changes over the whole steganogram.   

3. JPHS (JPHIDE and JPSEEK). The design objective was not simply to hide a file 

but rather to do this in such a way that it is impossible to prove that the host file 

contains a hidden file. Given a typical visual image, a low insertion rate (under 

5%) and the absence of the original file, it is not possible to conclude with any 

worthwhile certainty that the host file contains inserted data. As the insertion 
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percentage increases the statistical nature of the jpeg coefficients differs from 

"normal" to the extent that it raises suspicion. JPHS for Windows (JPWIN) is 

available at: http://digitalforensics.champlain.edu/download/jphs_05.zip/. 

 

In our experiments, we apply the sixth polynomial that fits the logarithmic of the 

histogram of the absolute values of the quantized DCT coefficients in the luminance 

component, and the error between  the logarithmic of the histogram and the polynomial 

fit R6(n) (n = 1, 2, …30) are extracted. Additionally, the measures of HCFCOM and 

HOMMS are extracted for comparison. Adaboost and SVM are applied to different 

feature sets. We perform each experiment 30 times.  In each time, the training samples 

are randomly chosen and the remaining samples are tested for validation. The ratio of 

training to test samples is 1:1. The mean values and standard deviation of the test 

accuracy in the 30 times are compared. 

 

Table 4-1 Detection performance (mean testing accuracy ± standard deviation, %) on 
different feature sets in binary class environment (cover and the steganogram) 
 

CryptoBola F5 JPHS       Hiding method 

                   Classifier 

Feature set  
Adaboost SVM Adaboost SVM Adaboost SVM 

{R6(n)|n = 1,2, …, 5} 100 ± 0 100 ± 0 95.6 ± 0.7 96.5 ± 0.7 85.8 ± 2.3 83.6 ± 2.3 

{R6(n)|n = 1,2, …, 10} 100 ± 0 99.9 ± 0.1 95.5 ± 0.8 95.6 ± 0.8 87.7 ± 1.7 86.2 ± 2.8 

{R6(n)|n = 1,2, …, 20} 99.9 ± 0.1 99.8 ± 0.1 94.1 ± 0.7 95.0 ± 0.8 87.5 ± 2.0 83.4 ± 2.2 

HCFCOM 56.4 ± 1.6 53.1 ± 2.2 59.7 ± 1.8 55.8 ± 2.1 62.7 ± 2.7 66.9 ± 3.6 

HOMMS 73.6 ± 1.7 50.0 ± 0.1 77.2 ± 1.7 50 ± 0 81.2 ± 2.7 50 ± 0 
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Table 4-1 lists the mean testing accuracy and the standard deviation using adaboost and 

SVM with different feature sets, showing that the detection performance of EPF is 

superior to those of HCFCOM and HOMMS. Fig. 4-2 plots the ROC curves of the 

detection performance on different feature sets with the use of adaboost. Table 4-1 and 

Fig. 4-2 indicate that EPF is the best detector in the steganalysis of the three types of 

JPEG steganography. Fig. 4-2(a) indicates that in steganalaysis of CryptoBola 

steganography, the area below the EPF curve (EPF curve is overlapped with the x-axis) is 

zero, which means that the detection performance on EPF is perfect, there is no error in 

classification of covers and steganograms. However, the detection performances on 

HCFCOM and HOMMS are not good. Fig. 4-2(b) and Fig. 4-2(c) also indicate that the 

detection performances on EPF are the best, and those on HCFCOM and HOMMS are 

not so good.  

 

Table 4-2 lists the testing results to the detector of EPF with the use of One-Against-All 

decomposition for Support Vector Machine (OAASVM) [Schlesinger and Hlavac, 2002; 

Vapnik 1998]. Table 4-2 indicates that, in the multi-class JPEG images, by applying 

OAASVM to EPF, the correction prediction for covers, cryptobola and F5 steganograms 

is very successful; but the discrimination between covers and JPHS steganograms is not 

so good.  To obtain a better prediction for covers and JPHS steganograms, we apply 

adaboost to the EPF features. Table 3 gives the testing results. Obliviously, just regarding 

the classification of covers and the JPHS on the EPF features, adaboost is superior to 

OAASVM. 
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Fig. 4-2 ROC curves in the steganalysis of the three types of steganography 

 

Table 4-2 The multi-class prediction in the multi-class JPEG images with the use of 
OAASVM 

 
         Multi-class prediction 

 
 
Multi-class testing sets 

Cover CryptoBola F5 JPHS Correction prediction in the 
multi-class 

Cover 10000 9967 3 30 0 99.7% 

CryptoBola 800 3 796 1 0 99.5% 

F5 800 75 1 724 0 90.5% 

JPHS 400 389 8 0 3 0.8% 
 

Table 4-3 The prediction between covers and JPHS steganograms with the use of 
Adaboost 

 
                                        Prediction 

 Testing sets Cover JPHS Correction prediction 

Cover 10000 9926 74 99.3% 

JPHS 400 175 225 56.3% 
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Fig. 4-3 The real distribution of the information-hiding ratios (left) and the prediction 
(right) with the use of DENFIS. 
 

We also apply DENFIS to predict the information-hiding length (ratio) in the JPEG 

steganograms. Here we specially measure the information-hiding ratio as the ratio of the 
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modification-length of the non-zero quantized DCT coefficients to the length of the non-

zero quantized DCT coefficients. 

  

Fig. 4-3 shows the real distribution of the information-hiding ratio (left) and the 

prediction (right) on the three JPEG stego-images. The prediction of the hiding ratio is 

denoted as pr, the real hiding ratio is denoted as rr. We adopt the following measure EP 

to evaluate the error of the prediction. 

 

EP = abs(pr – rr) / rr * 100%                                                                          (4-7) 

 

Table 4-4 gives the mean values of EP and the standard errors in the three JPEG 

steganograms. 

 

Table 4-4 Mean values and standard errors of the EPFs. 

 CryptoBola F5 JPHS (JPWIN) 

mean(EP) / std(EP), % 6.82 / 7.7 22.4 / 22.9 13.1 / 11.3 

 

 

4.5 Conclusions and Future Work 

In this chapter we propose a scheme of steganalysis of JPEG images. We extract the 

errors between the logarithmic of the marginal density of the quantized DCT coefficients 

and the polynomial fitting as the detector, and apply several computational techniques to 

the detection. Results show that, designed method is successful in detecting the presence 



    66

of hidden data in the JPEG steganograms produced by CryptoBola, F5, and JPHS. It is 

superior to the well-known methods of HCFCOM and HOMMS. We apply OAASVM, 

adaboost, and DENFIS to the EPFs of the imbalance multi-class JPEG images. Results 

indicate that our method is successful in detecting the information-hiding types and the 

information-hiding length. 

 

Future work includes improving and expanding method to detect the location of 

information-hiding by combining the features proposed by Fridrich [Fridrich, 2004] and 

extracting the payload without the prior knowledge of the information-hiding techniques.  
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CHAPTER 5: INTRODUCTION TO BIOINFORMATICS 

5.1 Bioinformatics in Brief 

Bioinformatics derives knowledge from computer analysis of biological data and is the 

intersection of multiple science fields including molecular biology, computer science, 

statistics, etc. There are various definitions of bioinformatics on the Web.  

Bioinformatics definition by bioinformatics definition Committee, National Institute of 

Mental Health released on July 17, 2000 (source: http://www.bisti.nih.gov/ )  

“The NIH Biomedical Information Science and Technology Initiative Consortium agreed 

on the following definitions of bioinformatics and computational biology recognizing that 

no definition could completely eliminate overlap with other activities or preclude 

variations in interpretation by different individuals and organizations.  

Bioinformatics: Research, development, or application of computational tools and 

approaches for expanding the use of biological, medical, behavioral or health data, 

including those to acquire, store, organize, archive, analyze, or visualize such data.  

Computational Biology: The development and application of data-analytical and 

theoretical methods, mathematical modeling and computational simulation techniques to 

the study of biological, behavioral, and social systems.” 

The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics 

as "Bioinformatics is the field of science in which biology, computer science, and 

information technology merge into a single discipline. There are three important sub-

disciplines within bioinformatics: the development of new algorithms and statistics with 

which to assess relationships among members of large data sets; the analysis and 

interpretation of various types of data including nucleotide and amino acid sequences, 
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protein domains, and protein structures; and the development and implementation of tools 

that enable efficient access and management of different types of information."  

Major research efforts in bioinformatics include sequence analysis, genome annotation, 

computational evolutionary biology, measuring biodiversity, analysis of gene expression, 

analysis of regulation, analysis of protein expression, analysis of mutation in cancer, 

prediction of protein structure, comparative genomics, and high-throughput image 

analysis, etc. [ http://en.wikipedia.org/wiki/Bioinformatics]  

 

5.2 Introduction to Microarays and SNPs 

Single Nucleotide Polymorphisms (SNPs) 

A Single Nucleotide Polymorphism or SNP (pronounced snip) is a DNA sequence 

variation occurring when a single nucleotide - A, T, C, or G - in the genome (or other 

shared sequence) differs between members of a species (or between paired chromosomes 

in an individual). For example, two sequenced DNA fragments from different individuals, 

AAGCCTA to AAGCTTA, contain a difference in a single nucleotide. In this case we 

say that there are two alleles: C and T. SNPs typically have three genotypes, denoted 

generically AA, Aa and aa. In the example above, the three genotypes would be CC, CT 

and TT. Each individual has many single nucleotide polymorphisms that together create a 

unique DNA pattern for that person. These changes may cause disease, and may affect 

how a person reacts to bacteria, viruses, drugs, and other substances. For example, Sickle 

cell anemia (SCA) is the most common inherited blood disorder in the United States, 

affecting about 72,000 Americans or 1 in 500 African Americans. SCA is an autosomal 
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recessive disease caused by a point mutation (SNP) in the hemoglobin beta gene (HBB) 

found in region 15.5 on the short arm (p) of chromosome 11 [genes and diseases, 

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=gnd].  

Additionally, the following phenomena are common in our life.  

1) One man who drinks alcohol and smokes cigarettes lives to age 90 without getting 

liver or lung cancer; another man who smokes and drinks the same amount gets cancer at 

age 60; the third one who does not smoke and drink gets cancer at age 55. 

 2) One woman's breast cancer responds to chemotherapy, and her tumor shrinks; another 

woman's breast cancer shows no change after the same treatment.  

How do we explain these differences? SNPs in the human genome may be the solutions. 

The human genome is the complete set of instructions for life. Except for red blood cells, 

which have no nucleus, the human genome is located in the nucleus of every cell in the 

body. There are 22 pairs of chromosomes and one pair of sex chromosomes. 

Chromosomes are made of deoxyribonucleic acid (DNA), which contains only four 

chemical bases or building blocks: Adenine (A), Thymine (T), Cytosine (C), and Guanine 

(G). There are roughly 3.2 billion chemical bases (A, T, C, G) in the human genome.  

Each DNA molecule is made up of two long complementary (related) strands, or "double 

helix” and A always pairs with T, and C with G, the order on one strand dictates the order 

on the other. Only about 3 percent of the human genome is actually used as the set of 

instructions and these regions are called coding regions and scattered throughout the 

chromosomes.  
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A coding region contains genes. A gene is a unique DNA sequence within a chromosome 

that ultimately directs the building of a specific protein with a specific function. Close to 

each gene is a "regulatory" sequence of DNA, which is able to turn the gene "on" or 

"off." There are at least 35,000 genes in the human genome, and there may be more. 

There is no function for most of the remaining 97 percent of the genome. These regions 

are called noncoding regions. An amazing aspect of the human genome is that there is so 

little variation in the DNA sequence when the genome of one person is compared to that 

of another. Of the 3.2 billion bases, roughly 99.9 percent are the same between any two 

people. It is the variation in the remaining tiny fraction of the genome, 0.1 percent--

roughly several million bases--that makes a person unique. This small amount of 

variation determines attributes such as how a person looks, or the diseases he or she 

develops. Most variations in the human genome have no known effect at all because they 

occur in noncoding regions of the DNA. In addition, there are some changes that do 

occur in coding and regulatory regions, yet they have no known effect. All these are 

silent variations. Some of the variations that occur in the coding and regulatory regions of 

genes have "harmless" effects. They can, for example, change the way a person "looks." 

Some people have blue eyes, others brown; some are tall, others short; and some faces 

are oval, others round.  Other variations in coding regions are harmless because they 

occur in regions of a gene that do not affect the function of the protein made.  

 

There are a group of variations in coding and regulatory regions that result in harmful 

effects. These are called mutations. They cause disease because changes in the genome's 

instructions alter the functions of important proteins that are needed for health. For 
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example, diabetes, cancer, heart disease, Huntington's disease, and hemophilia all result 

from variations that cause harmful effects. In a "simple" disease such as hemophilia, 

variation in one gene is sufficient to cause disease symptoms. By contrast, in a "complex" 

disease like cancer, symptoms are seen only after many variations have occurred in 

different genes in the same cell.  Finally, there are genetic variations that have "latent" 

effects. These variations, found in coding and regulatory regions, are not harmful on their 

own, and the change in each gene only becomes apparent under certain conditions. Such 

changes may eventually cause some people to be at higher risk for cancer, but only after 

exposure to certain environmental agents. They may also explain why one person 

responds to a drug treatment while another does not. Here is part of the genome from two 

people who are both smokers and drinkers, but only one of them gets cancer. The zoom 

into the chromosomes of these two men shows just a sampling of the differences in 

variation that are responsible for their individual cancer risk. The variations themselves 

do not cause cancer. They only affect each person's susceptibility to tobacco smoke and 

alcohol after exposure.  

 

SNPs are scattered throughout the genome and are found in both coding AND noncoding 

regions. SNPs can cause silent, harmless, harmful, or latent effects. They occur with a 

very high frequency, with estimates ranging from about 1 in 1000 bases to 1 in 100 to 

300 bases. This means that there could be millions of SNPs in each human genome. The 

abundance of SNPs and the ease with which they can be measured make these genetic 

variations significant. Most SNPs occur in non-coding regions and do not alter genes. 

Scientists are finding that some of these SNPs have a useful function. If a SNP is 
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frequently found close to a particular gene, it acts as a marker for that gene. The 

remaining SNPs occur in coding regions. They could alter the protein made by that 

coding region, which in turn could influence a person's health 

[http://www.nci.nih.gov/cancertopics/understandingcancer/geneticvariation].  

Microarrays    

In the past several years, a new technology, called DNA microarray, has attracted 

tremendous interests among biologists. This technology promises to monitor the whole 

genome on a single chip so that researchers can have a better picture of the interactions 

among thousands of genes simultaneously.  

 

Microarray is a 2D array, typically on a glass, filter, or silicon wafer, upon which genes 

or gene fragments are deposited or synthesized in a predetermined spatial order allowing 

them to be made available as probes in a high-throughput, parallel manner.  Microarrays 

include different kinds of biological assays: DNA microarrays, protein microarrays, 

tissue microarrays, transfection microarrays, chemical compound microarrys, and 

antibody microarrays.  A DNA microarray (also commonly known as gene chip, DNA 

chip, genome chip or gene array) is a collection of microscopic DNA spots, arrayed on a 

solid surface by covalent attachment to chemically suitable matrices. An array is an 

orderly arrangement of samples. It provides a medium for matching known and unknown 

DNA samples based on base-pairing rules (i.e., A-T and G-C for DNA; A-U and G-C for 

RNA) and automating the process of identifying the unknowns [Simon et al., 2003; 

Muller and Nicolau, 2005].   
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DNA microarray, or DNA chips are fabricated by high-speed robotics, generally on 

glass but sometimes on nylon substrates, for which probes with known identity are used 

to determine complementary binding, thus allowing massively parallel gene expression 

and gene discovery studies. An experiment with a single DNA chip can provide 

researchers information on thousands of genes simultaneously [Lander et al., 1999, 

Allison, 2005].  

 

There are three types of microarrays, two are genomic and the other is “transcriptomic”, 

which measures mRNA levels. The first one is called microarry expression analysis, 

which determines the gene expression level, or volume. And the arrays in this type of 

analysis, so-called “expression chips”, can are used in drug development, drug response, 

and therapy development. The second called microarray Comparative Genomic 

Hybridization (CGH) is applied to look for genomic gains and losses or for a change in 

the number of copies of a particular gene involved in a disease state.  The third one is 

used to detect mutations or polymorphisms in a gene sequences, the target, or 

immobilized DNA including single nucleotide polymorphism (SNP). 

[http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html]. 

 

The microarray (DNA chip) technology is having a significant impact on genomics study. 

Many fields, including drug discovery and toxicological research, etc., will certainly 

benefit from the use of DNA microarray technology. For example, if a certain gene is 
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over-expressed in a particular cancer, expression chips can be used to see if a new drug 

will reduce over-expression and force the cancer into remission. In response to infection, 

certain cell types will express sets of genes and synthesize certain proteins that respond to 

the stress. Messenger RNA (mRNA) is like a photocopy of a blueprint that is used in the 

shop to build a specific type of protein. In a microarray, we can attach sequences from a 

range of genes to a glass slide in a series of dots, and then bind the mRNA extracted from 

a population of cells and measure how much binds to each dot. That gives us a snapshot 

of which genes are being expressed at any given time. Compare the patterns for mRNA 

from, for example, normal breast tissue and from a breast tumor, and you can identify 

proteins that are only present in the tumor. Those proteins are potential targets for cancer 

treatments, vaccines, and other therapeutics. Other applications of microarrays include 

tumor classification, risk assessement, and prognosis prediction, drug development, 

therapy development, and tracking disease progression, etc. The more details can be 

found in the source  [http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html]. 

 

Since microarray can be used to examine the expression of thousands of genes 

simultaneously, absolutely, it promises to revolutionize the way scientists examine gene 

expression and represent an important and necessary first step in our understanding and 

cataloging of the human genome. Microarray data may contain high variables of the 

genes, it is very important and challenging to mine the critical or related genes from the 

microarray data and construct the association between the data and the phenotypes.  

Under my advisor’s direction, I focused my dissertation research in bioinformatics on 
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microarray analysis and tagging SNP selection. The reminder chapters are organized as 

follows. Chapter 6 presents the algorithms of recursive feature addition and lagging 

prediction peephole optimization to improve the classifications of microarray data 

analysis. Chapter 7 expands the algorithm of recursive feature addition to tagging SNP 

selection and introduces a method of SNP selection by calculating the support vector 

weights and the idea of recursive feature addition.  
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CHAPTER 6: MICROARRAY GENE EXPRESSION 

ANALYSIS 

6.1 Related Work in Microarray Analysis 

Microarrays are capable of profiling the gene expression patterns of tens of thousands of 

genes in a single experiment. One of the key challenges of microarray studies is to derive 

biological insights from the unprecedented quantities of data on gene expression patterns. 

Partitioning genes into closely related groups across time with clustering techniques and 

classification of the patients based on the selected gene signatures have become two main 

tracks of practically all analyses of microarray data in the past decade [Quackenbush, 

2001; Hand and Heard, 2005; Segal et al., 2005; Tjaden, 2006; Qin, 2006; Sha et al., 

2006]. Statistical modeling and inference problems with sample sizes substantially 

smaller than the number of available features/genes are challenging, which is known as 

the “large p small n problem”. Moreover, exploiting information redundancy from highly 

correlated genes/features may potentially reduce the efforts in terms of time and cost for 

genetic studies in human genetic research. The two fundamental questions and challenges 

of the high dimensional gene data are how many genes is enough to provide good 

prediction performance of disease status and how to determine the optimal final gene set 

that are best for predictions and classifications. 

 

To address the “curse of dimensionality” problem, generally, such efforts can be grouped 

into three categories: filtering, wrapper, and embedded methods. Filtering methods select 

feature subsets independently from the learning classifiers and do not incorporate 
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learning [Newton et al., 2001; Long et al., 2001; Bo and Jonassen, 2002; Yu and Chen, 

2005]. A weakness of filtering methods is that they only consider the individual features 

in isolation and ignore the possible interaction among them. Yet, the combination of 

these features may have a combined effect that does not necessarily follow from the 

individual performances of features in the group [Pavlidis and Noble, 2001]. One of the 

consequences of filtering methods is that we may end up with many highly correlated 

features/genes with highly redundant information that worsens the classification and 

prediction performance. If there is a limit on the number of features to be chosen, we may 

not be able to include all informative features. 

 

To address this problem in filtering methods, wrapper methods wrap around a particular 

learning algorithm that can assess the selected feature subsets in terms of the estimated 

classification errors and then build the final classifier [Inza et al., 2002]. Wrapper 

methods use a learning machine to measure the quality of subsets of features. One of the 

recent well-known wrapper methods for feature/gene selection is Support Vector 

Machine Recursive Feature Elimination, which refines the optimum feature set by using 

Support Vector Machine [Guyon et al., 2002]. The idea of SVMRFE is that the 

orientation of the separating hyper-plane found by the SVM can be used to select 

informative features: if the plane is orthogonal to a particular feature dimension, then that 

feature is informative, and vice versa.  

 

Wrapper methods can notably reduce the number of features and significantly improve 

the classification accuracy [Monari and Dreyfus, 2000; Rivals and Personnaz, 2003]. 
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However, wrapper methods have the drawback of high computational cost. With much 

better computational efficiency and similar performance to wrapper methods, a relatively 

new class of approaches for feature selection called “embedded methods” has become 

available in the literature. Embedded methods process feature selection simultaneously 

with the learning classifier, therefore they can incorporate knowledge about the structure 

of the classification. LASSO proposed by Tibshirani [Tishirani, 1996, 1997]; logic 

regression with the regularized Laplacian prior [Krishanpuram et al., 2005]; and 

Bayesian regularized neural network with automatic relevance determination [Liang and 

Kelemen, 2005] are examples of embedded techniques. 

 

Combining the sequential forward selection (SFS) and sequential floating forward 

selection (SFFS) with LS (Least Squares) Bound measure, Zhou and Mao proposed SFS-

LS bound and SFFS-LS bound algorithms for optimal gene selection [Zhou and Mao, 

2005]. To improve the classification of microarray gene expression data, another two 

gene selection methods were proposed, one is leave-one-out calculation sequential 

forward selection (LOOCSFS) algorithm, and the other is the gradient based leave-one-

out gene selection (GLGS) algorithm [Tang et al., 2006]. Recently, Diaz-Uriarte and de 

Andres presented a new method for gene selection that uses random forest [Diaz-Uriarte 

and de Andres, 200]. The main advantage of this method is that it returns very small sets 

of genes that retain a high predictive accuracy. The algorithms are publicized in the R 

package of varSelRF. 
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In this chapter, a scheme of Recursive Feature Addition (RFA) is presented to deal with 

redundancy issues and to improve the classification accuracy [Liu and Sung, 2006]. The 

recursive procedure is based on the supervised learning with selected classifier and the 

statistical similarity measures between the chosen genes and the candidates. We compare 

RFA with above SVMRFE, LOOCSFS, GLGS, SFS-LSbound, SFFS-LSbound, and T-

test using six benchmark microarray gene expression datasets. Moreover, we propose a 

new algorithm, called Lagging Prediction Peephole Optimization to choose the final 

optimal feature/gene set for improve the classification. We compared our LPPO to 

random strategy under the best training classification and also LPPO with RFA to the 

popular gene selection method with the use of RF using six benchmark datasets. 

 

6.2 Recursive Feature Addition for Gene Selection 

6.2.1 Supervised Recursive Learning 

The method of recursive feature addition is based on supervised learning and statistical 

similarity measures between the chosen genes and the candidates. This new approach is 

an embedded method and is presented as follows: 

 

1. Each individual gene is selected with supervised learning, and the gene with the 

highest classification accuracy is chosen as the most important feature, and the first 

element of the feature set. If multiple genes achieve the same highest classification 

accuracy, the lowest p-value measured by test-statistics (e.g., score test), is the target of 
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the first element. At this point the chosen feature set, G1, consists of the first feature, g1, 

which corresponds to feature dimension one. 

 

2. The N+1 dimension feature set, GN+1 = {g1,  g2 ,…, gN , gN+1}  is produced by adding 

gN+1 to the N dimension feature set, GN = {g1,  g2 ,…, gN}. The choice of gN+1 is described 

as follows: 

 

Add each gene gi (i  ≠ 1   2, …, N) outside of GN to GN and record the classification 

accuracy of the feature set GN + {gi}. The gc (gc ∉ GN) corresponding to the highest 

classification accuracy is marked and put into the set of candidates, C. Generally, the set 

of candidates consists of multiple genes because of the high dimension of microarray data, 

but only one gene in C will be chosen. 

 

6.2.2 Candidate Feature Addition 

To obtain a more informative and least redundant set, two strategies are designed for 

choosing gN+1 by measuring the statistical similarity between the chosen genes and 

candidates. Here we apply Pearson’s correlation coefficient [Tan et al., 2005] between 

the chosen gene gn (gn ∈  GN , n = 1, 2,…, N) and the candidate gc (gc ∈  C, c = 1, 2 … m; 

m is the number of the elements in C) to measure the similarity. 

 

In the first strategy, the Sum of the square of the Correlation (SC) is calculated to 

measure the similarity and is defined as follows: 
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SC(gc) = ∑
=

N

n 1
cor2(gc, gn),  n = 1, 2… N                                                               (6-1) 

where, gc ∈  C, gn ∈  GN. 

 

The selection of gN+1 follows the qualification that the SC value is the minimum:  

{gN+1 | gN+1∈C ∩ SC(gN+1)=min(SC(gc)),gc∈C}                                                  (6-2) 

This strategy is called Minimum Sum of the square of the Correlation (MSC). 

 

In the second strategy, the Maximum value of the square of the Correlation (MC) is 

calculated as follows: 

MC(gc)  = max (cor2(gc, gn) ), n = 1, 2,…, N.                                                     (6-3) 

where, gc ∈   C, gn ∈  GN. 

 

The selection of gN+1 follows the criterion that the MC value is the minimum: 

{gN+1 | gN+1∈C ∩ MC(gN+1)=min(MC(gc)),gc∈C}                                             (6-4) 

This strategy is called Minimum of Maximum value of the square of the Correlation 

(MMC). 

 

In the methods mentioned above, a feature is recursively added to the chosen feature set 

based on supervised learning and the similarity measures. With the use of a classifier in 

supervised learning, we call the first strategy Classifier-MSC and the second one 

Classifier-MMC. For example, if the classifier for supervised learning is Naive Bayes 

Classifier (NBC), we call the two new strategies NBC-MSC and NBC-MMC, 

respectively. 
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6.2.3 Lagging Prediction Peephole Optimization 

Generally, we want to find a subset of features/genes that yields the best classification 

and prediction performance with the optimal number of genes. The optimization of the 

feature set in microarray gene expression is highly complicated because of the 

characterization of the small sample size. Either applying different gene selections to the 

same training samples or applying the same gene selection to different training samples 

or applying different learning classifiers to the same training samples will produce 

different optimization of the feature set. Pochet et al. presented a method of determining 

the optimal number of genes by means of a cross-validation procedure. “In each LOO-

CV iteration (number of iterations equals the sample size), one sample is left out of the 

data, a classification model is trained on the rest of the data and this model is then 

evaluated on the left out data point” (Pochet et al., 2004). Actually, this procedure by 

means of LOO-CV utilizes the testing samples in addition to the training samples since 

the iteration covers all the samples. In the view of my point, the optimization of the 

number of genes should be just based on the training samples. 

 

The gene selection of RFA is based on supervised learning, with the recursive addition of 

the next gene; the training classification will increase and finally reach the best 

classification, and then may maintain it. After that, the training classification may 

decrease. Normally, all strategies for determining the feature set should be based on the 

best training classification. If there are multiple best training classifications, just 

randomly choose one. We call this scheme random strategy under the best training 
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classification. However, in the recursive addition of the features, as training initially 

reaches the highest accuracy, generally, the training model may not be optimal or robust 

to the testing samples because of the difference of training samples and the testing 

samples. In other words, the testing classification may not be the optimal and the best 

classification model to the testing samples will lag in appearance (see Fig. 1). Based on 

this consideration and observation, we propose the following algorithm of optimization. 

 

1. Under feature dimension j, the training accuracy of the ith experiment is r(i, j). 

Pick up the feature set Gk, corresponding to feature dimension k, which has the best 

training accuracy in the trainings on the feature sets from G1 to GD, corresponding to the 

feature dimensions from 1 to D. The set of Gk is denoted as HR. 

 

HR = {Gk | 1 ≤∀ k ≤ D, r(i,k) = max(r(i,j)), 1 ≤ j ≤ D}                                      (6-5) 

 

2. Generally, the best classification model to testing samples will lag in appearance 

behind the initial best training model. We exclude the elements of HR that correspond to 

the initial best training. The remaining elements of HR consist of the candidate set HRC 

for optimization. 

 

3. Each element of HRC is associated with the best training accuracy. We set a 

peephole on each element and choose the element associated with the best mean value of 

the training to the whole peephole, described as follows: 
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a. For each element Gk ∈  HRC, the peephole on Gk with the length 2l+1 covers the 

feature sets Gk-l, Gk-l+1,…, Gk , …, Gk+l-1, Gk+l, corresponding to the training accuracy  r(i, 

k-l), r(i, k-l+1), …, r(i, k), …,r(i, k+l-1), r(i, k+l). The mean training value of the 

peephole is denoted as mp_r(i,k). 

∑+= +=
−=

lkm
lkm mirlkirmp ),())12/(1(),(_                             (6-6) 

 

The feature set located on the center of the peephole, which has the best classification 

of mp_r is chosen as the optimal one. 

 

b. If there are multiple peepholes with the highest classification mp_r, then we apply 

random forest to these peepholes and check the mean values of the Out-of-Bag (OOB) 

error rates [Breiman, 2001; Liaw and Wiener, 2002; Diaz-Uriarte and de Andres, 2006]. 

The feature sets Gk-l ,Gk-l+1 ,…, Gk, ,…, Gk+l-1, Gk+l correspond to the OOB errors, 

oob_e(i,k-l), oob_e(i,k-l+1),…, oob_e(i,k), …, oob_e(i,k+l-1), oob_e(i,k+l). The mean 

value of the OOB errors is denoted as mp_oob_e(i,k) 

 

∑+= +=
−=

lkm
lkm mieooblkieoobmp ),(_))12/(1(),(__                               (6-7) 

 

Pick up the feature set associated with the minimum of mp_oob_e as the optimal one. 

 

c. If there are multiple peepholes corresponding to the best mp_r and minimum 

mp_oob_e, then set l +1 →  l, and repeat ‘a’ to ‘c’. 
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We call this strategy of optimization of RFA as Lagging Prediction Peephole 

Optimization (LPPO). Fig. 6-1 gives the demonstration of the LPPO on the prostate data 

set [Singh et al., 2002]. 

 

 

 

Fig. 6-1 Demonstration of Lagging Prediction Peephole Optimization algorithm on the 
Prostate data set. 

 

6.3 Evaluation of Gene Selection 

Under feature dimension j, the training accuracy of the ith experiment is r(i, j), and the 

testing accuracy of the ith experiment is s(i, j), i=1, 2, …, I; j=1, 2, …, J; where I is the 

number of experiments and J  is the number of chosen features. The following statistics 

are measured to evaluate the performance of the gene selections. 
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(1) The average training accuracy in each feature dimension 

The average training accuracy of the experiments under the feature dimension j, r(j), 

j=1, 2, …, J is calculated as follows: 

∑ =
=

I

i
jir

I
jr

1
),(1)(                                                                                          (6-8) 

 

(2) The average testing accuracy in each feature dimension 

The average testing accuracy of the experiments under the feature dimension j, s(j), 

j=1, 2, …, J, is calculated as follows: 

∑ =
=

I

i
jis

I
js

1
),(1)(                                                                                         (6-9) 

 

(3)  The average testing accuracy, ms_hr(i), of the ith experiment under the condition 

that the associated/corresponding training accuracy is the highest, which is defined as 

follows: 

},..2,1{,)),,(max(),(|)),((mean)(_ Jjmjirmirmisihrms ∈∀==                        (6-10) 

Actually, the average testing accuracy ms_hr(i) is the expected value of the random 

strategy under the best training classification of the ith experiment. 

 

(4)  The highest testing accuracy, hs_hr(i), of the ith experiment under the condition 

that the associated/corresponding training accuracy is the highest, which is defined as 

follows: 

},..2,1{,)),,(max(),(|)),((max)(_ Jjmjirmirmisihrhs ∈∀==                (6-11)  
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6.4 Experiments 

6.4.1 Data Sets 

The following six benchmark microarray gene expression datasets were tested in our 

experiments. Data sources which are not specified are available at: 

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. 

 

1) The LEUKEMIA data set, which consists of two types of acute leukemia: 48 acute 

lymphoblastic leukemia (ALL) samples and 25 acute myeloblastic leukemia (AML) 

samples, over 7129 probes from 6817 human genes [Golub et al., 1999]. 

 

2) The LYMPHOMA data set, which consists of 58 diffuse large B-cell lymphoma 

(DLBCL) samples and 19 follicular lymphoma (FL) samples [Shipp et al., 2002]. The 

data file, lymphoma_8_lbc_fscc2_rn.res, and the class label file, 

lymphoma_8_lbc_fscc2.cls were used in our experiments for identifying DLBCL and FL. 

 

3) The PROSTATE data set contains 52 prostate tumor samples and 50 non-tumor 

prostate samples [Singh et al., 2002].  

 

4) The COLON cancer data set contains 62 samples collected from colon-cancer patients. 

Among them, 40 tumor biopsies are from tumors and 22 normal biopsies are from 

healthy parts of the colons of the same patients. 2000 genes were selected based on the 
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confidence in the measured expression levels [Alon et al., 1999]. The data source is 

available at http://microarray.princeton.edu/oncology/affydata/index.html. 

 

5) The Central Nervous System (CNS) embryonal tumor data set that was originally 

studied by [Pomeroy et al., 2002]. It contains 60 patient samples. Among them 21 are 

survivors who are alive after treatment and 39 are failures who succumbed to their 

diseases. There are 7129 genes. 

 

6) The Breast cancer data set studied by [Van et al., 2002]. This data set contains 97 

patient samples, 46 patients are relapse who had developed distance metastases within 5 

years, and 51 patients are non-relapse who remained healthy for at least 5 years from the 

distance after their initial diagnosis. This data source is available at:      

http://www.rii.com/publications/2002/vantveer.htm. 

 

6.4.2 Experimental Setup 

Our experiments are designed as follows:  

1. The data sets are first divided into training samples and testing samples randomly. The 

ratio of training samples to testing samples is 1:1 in each class.  

 

2. Recursive Feature Additions with Naive Bayes Classifier (NBC) and Nearest Mean 

Scaled Classifier (NMSC) for gene selection (NBC-MSC, NBC-MMC, NMSC-MSC, and 

NMSC-MMC) were applied to the training samples for gene selection. Different feature 

sets of the gene expression data are produced under feature dimensions 1 to 100. We 
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compared the above proposed methods to several recently developed and published gene 

selection methods: LOOCSFS, GLGS, SVMRFE, SFFS-LS bound, SFS-LS bound, and 

also T-TEST.  

 

3. The learning classifiers including NBC, NMSC, SVM, and Random Forest [Breiman, 

2001; Liaw and Wiener, 2002] were applied to the testing samples to compare different 

gene selections. 

 

4. The experiments were performed 20 runs and the average testing accuracies were 

compared to evaluate performance. 

 

6.5 Results 

6.5.1 Average Training Accuracy 

Fig.6-2 lists the average training accuracies on the six data sets with classifiers NMSC, 

SVM, NBC, and RF. The performances of NBC-MMC, NMSC-MMC, NBC-MSC, and 

NMSC-MSC are close to one another. Therefore, to clearly demonstrate the other seven 

gene selections, the average training accuracies of the gene selections NBC-MMC, 

NMSC-MMC, and NBC-MSC are not presented due to their similar performance in order. 

Fig.6-2 indicates that on the average with the use of learning classifiers NMSC and NBC, 

the average training accuracy of NMSC-MSC is the best, followed by GLGS, SVM-RFE, 

LOOCSFS, SFS-LSbound, SFFS-LSbound, and T-TEST; with the use of learning 

classifiers SVM and RF, there is no obvious difference in different gene selections. 
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Fig. 6-2 The average training accuracies of different gene selections for six benchmark 
data sets for four classifiers (NBC, NMSC, SVM, RF). X-axis and y-axis give the feature 
dimension and testing accuracy values, respectively. 



    91

 

6.5.2 Average Testing Accuracy 

Fig. 6-3 lists the average testing accuracies of the gene selections with classifiers NMSC, 

SVM, NBC, and RF. Again, the performances of NBC-MMC, NMSC-MMC, NBC-MSC, 

and NMSC-MSC are close to one another therefore, the average testing accuracies of the 

gene selections NBC-MMC, NMSC-MMC, and NBC-MSC are not listed in the figures. 

Fig 6-3 indicates that, the average testing accuracy of NMSC-MSC is the best, followed 

by GLGS, LOOCSFS, and SVM-RFE. SFS-LS bound, SFFS-LS bound, and T-TEST 

didn’t perform well. Fig. 6-3 also manifests that, spanning several data sets and learning 

classifiers, the performance and stabilization of the gene selection of NMSC-MSC is the 

best. 

 

6.5.3 Testing Accuracy under the Best Training 

Table 6-1 provides the mean values and standard errors of the testing accuracies ms_hr(i), 

(i = 1, 2, …, 20) and the highest testing accuracies hs_hr(i), (i= 1, 2, …, 20) under the 

highest training classification, defined in (10) and (11), respectively. After applying each 

classifier to each data set, the highest mean value of the ten gene selections is shaded. In 

each data set, the highest mean value in the shade is in bold. Table 6-2 lists the statistics 

of the highest mean value associated with gene selections. Tables 6-1 and 6-2 show that, 

the best gene selection is NBC-MSC, followed by NMSC-MSC, NMSC-MMC, NBC-

MMC, LOOCSFS, GLGS, and SVMRFE. SFFS-LSBOUND and SFS-LSBOUND 

performed poorly. On the average, T-TEST was the worst. 
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Fig. 6-3 The average testing accuracies of different gene selections for six benchmark 
data sets for four classifiers (NBC, NMSC, SVM, RF). X-axis and y-axis give the feature 
dimension and testing accuracy values, respectively. 
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Table 6-1 Mean values and standard errors of hs_hr and ms_hr. In applying each 
classifier to each data set, the highest mean value of the ten gene selections is shaded; in 
each data set, the highest mean value in the shade is in bold. 
 

MEAN(HS_HR) ± STD(HS_HR), % MEAN(MS_HR) ± STD(MS_HR), % 
DATA SET 

GENE 
SELECTION NMSC SVM NBC RF NMSC SVM NBC RF 

Leukemia 

NBC-MMC 
NMSC-MMC 
NBC-MSC 

NMSC-MSC 
GLGS 

LOOCSFS 
SVMRFE 

SFFS-LSBOUND 
SFS-LSBOUND 

T-TEST 

99.9 ± 0.6 
99.9 ± 0.6 
99.4 ± 1.1 
99.7 ± 0.9 
99.6 ± 1.0 
97.1 ± 3.3 
98.0 ± 2.0 
97.1 ± 2.5 
97.1 ± 2.8 
94.8 ± 3.5 

99.4 ± 1.2 
99.1 ± 1.3 
99.1 ± 1.3 
99.6 ± 1.0 
98.9 ± 1.7 
98.0 ± 1.5 
95.4 ± 3.9 
97.4 ± 3.8 
97.0 ± 3.0 
95.4 ± 4.5 

98.3 ± 2.3 
98.4 ± 1.9 
98.9 ± 1.4 
98.6 ± 1.7 
98.6 ± 1.7 
97.7 ± 1.9 
97.3 ± 2.1 
96.3 ± 4.1 
96.4 ± 3.6 
93.3 ± 6.9 

98.4 ± 1.4 
98.6 ± 1.9 
98.4 ± 1.7 
98.7 ± 1.7 
98.6 ± 1.7 
99.3 ± 1.2 
98.0 ± 2.0 
97.1 ± 2.8 
97.3 ± 3.0 
96.8 ± 2.9 

98.1 ± 1.4 
97.9 ± 1.2 
98.5 ± 1.6 
97.7 ± 1.4 
97.8 ± 1.7 
93.9 ± 3.5 
95.7 ± 2.8 
93.8 ± 4.3 
94.6 ± 3.5 
92.2 ± 3.9 

93.4 ± 2.8 
93.3 ± 2.8 
94.9 ± 2.7 
94.8 ± 2.5 
92.5 ± 3.8 
94.8 ± 3.1 
92.5 ± 5.2 
92.9 ± 3.8 
93.6 ± 3.8 
90.7 ± 4.8 

94.3 ± 2.8 
95.2 ± 2.8 
94.6 ± 2.7 
94.6 ± 3.4 
95.3 ± 1.8 
94.5 ± 2.7 
92.5 ± 3.0 
90.2 ± 5.8 
91.2 ± 5.0 
90.1 ± 6.5 

95.6 ± 2.3 
95.7 ± 3.4 
96.0 ± 2.5 
95.7 ± 3.1 
95.0 ± 2.5 
96.7 ± 1.6 
93.4 ± 1.9 
92.6 ± 4.1 
93.0 ± 5.1 
93.5 ± 3.6 

Lymphoma 

NBC-MMC 
NMSC-MMC 
NBC-MSC 

NMSC-MSC 
GLGS 

LOOCSFS 
SVMRFE 

SFFS-LSBOUND 
SFS-LSBOUND 

T-TEST 

98.1 ± 2.6 
99.2 ± 1.2 
99.4 ± 1.1 
99.5 ± 1.1 
98.6 ± 1.8 
87.0 ± 7.2 
99.2 ± 1.5 
88.7 ± 6.1 
87.7 ± 6.1 
86.0 ± 5.7 

99.0 ± 1.3 
98.8 ± 1.6 
98.4 ± 1.8 
98.8 ± 1.6 
98.2 ± 1.9 
93.0 ± 5.3 
96.5 ± 3.9 
95.1 ± 3.3 
96.1 ± 3.5 
94.4 ± 3.0 

97.3 ± 2.6 
97.9 ± 2.6 
97.9 ± 2.6 
98.1 ± 2.0 
97.0 ± 2.6 
87.3 ± 5.1 
97.2 ± 3.4 
84.0 ± 4.9 
86.1 ± 3.5 
86.5 ± 7.0 

96.4 ± 2.8 
96.5 ± 3.7 
96.8 ± 3.3 
97.0 ± 3.6 
96.9 ± 2.3 
92.9 ± 4.8 
96.6 ± 3.1 
92.2 ± 4.7 
91.8 ± 4.2 
91.7 ± 5.2 

96.2 ± 4.3 
96.9 ± 1.9 
97.5 ± 1.9 
97.2 ± 1.9 
96.5 ± 2.1 
85.8 ± 6.8 
96.5 ± 2.0 
87.0 ± 5.7 
86.4 ± 5.6 
84.3 ± 5.8 

93.8 ± 2.8 
93.0 ± 2.8 
93.1 ± 3.5 
93.9 ± 3.0 
92.5 ± 3.8 
87.8 ± 5.4 
91.8 ± 4.3 
88.2 ± 4.9 
91.1 ± 3.7 
87.7 ± 3.3 

91.7 ± 3.9 
93.1 ± 3.3 
92.7 ± 3.5 
93.9 ± 3.1 
92.3 ± 3.6 
85.1 ± 4.5 
93.1 ± 4.0 
80.6 ± 3.9 
82.7 ± 3.4 
83.9 ± 6.1 

91.6 ± 3.7 
92.3 ± 4.0 
92.6 ± 4.1 
93.4 ± 3.9 
91.7 ± 2.9 
88.2 ± 4.3 
93.3 ± 4.0 
86.8 ± 4.8 
86.1 ± 4.8 
87.2 ± 4.5 

Prostate 

NBC-MMC 
NMSC-MMC 
NBC-MSC 

NMSC-MSC 
GLGS 

LOOCSFS 
SVMRFE 

SFFS-LSBOUND 
SFS-LSBOUND 

T-TEST 

96.3 ± 2.4 
95.6 ± 2.3 
96.4 ± 2.0 
96.9 ± 2.3 
93.6 ± 3.0 
88.4 ± 5.2 
94.1 ± 3.4 
90.4 ± 3.2 
89.7 ± 4.9 
91.4 ± 4.1 

95.8 ± 2.5 
95.9 ± 2.5 
96.6 ± 1.9 
96.7 ± 1.7 
96.1 ± 2.2 
94.9 ± 2.9 
92.3 ± 2.7 
93.4 ± 2.8 
92.7 ± 4.0 
92.5 ± 2.1 

94.8 ± 2.6 
93.7 ± 2.8 
95.2 ± 2.1 
94.5 ± 2.0 
90.4 ± 3.9 
90.7 ± 5.3 
92.8 ± 4.3 
86.2 ± 5.8 
87.3 ± 5.4 
91.7 ± 2.8 

96.5 ± 2.0 
95.3 ± 2.3 
96.5 ± 1.9 
95.8 ± 1.8 
94.7 ± 2.0 
95.2 ± 2.6 
95.7 ± 2.6 
90.2 ± 3.2 
92.4 ± 3.5 
94.0 ± 3.0 

94.2 ± 2.8 
92.7 ± 2.3 
94.6 ± 2.3 
94.5 ± 2.4 
91.5 ± 2.7 
87.0 ± 4.7 
92.4 ± 3.3 
88.9 ± 3.1 
88.3 ± 5.1 
89.7 ± 3.7 

91.6 ± 2.3 
91.4 ± 2.8 
92.5 ± 2.3 
92.8 ± 1.9 
91.7 ± 2.6 
91.1 ± 3.4 
86.7 ± 3.5 
86.0 ± 3.2 
87.2 ± 5.0 
87.1 ± 3.2 

90.4 ± 2.7 
90.7 ± 3.1 
91.0 ± 2.3 
91.8 ± 2.5 
87.5 ± 3.4 
88.0 ± 4.5 
90.0 ± 4.0 
84.4 ± 5.1 
85.1 ± 5.4 
89.0 ± 4.3 

92.1 ± 2.2 
91.3 ± 2.3 
92.5 ± 2.2 
92.0 ± 1.9 
90.0 ± 2.5 
92.3 ± 2.3 
92.5 ± 2.8 
86.1 ± 4.0 
89.0 ± 3.9 
91.0 ± 3.1 

Colon 

NBC-MMC 
NMSC-MMC 
NBC-MSC 

NMSC-MSC 
GLGS 

LOOCSFS 
SVMRFE 

SFFS-LSBOUND 
SFS-LSBOUND 

T-TEST 

88.7 ± 5.5 
91.1 ± 5.0 
89.4 ± 4.3 
91.0 ± 5.3 
87.3 ± 6.2 
85.0 ± 5.3 
86.0 ± 6.7 
85.0 ± 4.8 
85.3 ± 4.6 
77.4 ± 10.4 

87.7 ± 5.2 
87.7 ± 3.9 
86.9 ± 4.6 
87.6 ± 4.7 
87.3 ± 4.6 
86.3 ± 3.9 
86.8 ± 4.8 
87.1 ± 4.4 
85.8 ± 5.3 
85.5 ± 4.0 

86.5 ± 4.0 
87.4 ± 5.3 
88.7 ± 6.0 
88.1 ± 3.3 
85.2 ± 4.8 
81.6 ± 5.8 
82.1 ± 7.4 
72.7 ± 7.0 
76.8 ± 7.1 
76.3 ± 8.3 

89.7 ± 4.9 
90.0 ± 4.0 
90.0 ± 4.0 
90.0 ± 4.4 
90.5 ± 4.3 
86.8 ± 5.3 
86.3 ± 5.5 
82.6 ± 6.0 
86.0 ± 4.1 
81.5 ± 7.2 

84.5 ± 5.2 
84.9 ± 7.1 
86.0 ± 5.2 
86.0 ± 5.4 
83.7 ± 6.6 
82.2 ± 4.6 
81.8 ± 7.2 
82.4 ± 4.4 
83.3 ± 4.7 

  74.9 ± 
10.8 

80.9 ± 6.0 
81.3 ± 5.5 
80.3 ± 5.6 
80.9 ± 5.5 
81.2 ± 5.5 
79.3 ± 5.2 
80.7 ± 4.7 
76.2 ± 6.3 
77.7 ± 6.4 
75.3 ± 5.7 

78.2 ± 4.9 
80.8 ± 5.9 
82.1 ± 4.8 
82.6 ± 4.0 
77.6 ± 5.8 
76.7 ± 6.9 
77.7 ± 7.5 
69.5 ± 8.3 
72.5 ± 6.2 
72.8 ± 8.2 

82.5 ± 5.5 
83.3 ± 5.4 
84.4 ± 4.7 
83.9 ± 4.5 
83.0 ± 4.5 
80.3 ± 5.3 
80.3 ± 6.0 
74.6 ± 6.8 
77.6 ± 4.5 
75.1 ± 7.8 

CNS 

NBC-MMC 
NMSC-MMC 
NBC-MSC 

NMSC-MSC 
GLGS 

LOOCSFS 
SVMRFE 

SFFS-LSBOUND 
SFS-LSBOUND 

T-TEST 

91.8 ± 6.1 
90.0 ± 6.4 
94.0 ± 4.6 
92.8 ± 4.0 
84.7 ± 3.3 
71.3 ± 9.8 
83.2 ± 8.9 
68.1 ± 6.7 
67.8 ± 6.2 
67.5 ± 8.8 

92.9 ± 3.6 
92.2 ± 5.7 
92.0 ± 4.4 
91.6 ± 4.9 
91.1 ± 5.4 
85.0 ± 5.9 
85.1 ± 8.4 
71.9 ± 7.1 
72.4 ± 4.9 
77.4 ± 6.4 

77.8 ± 5.2 
78.0 ± 5.3 
81.1 ± 4.1 
81.3 ± 6.1 
78.8 ± 5.5 
79.1 ± 7.7 
77.1 ± 6.8 
67.6 ± 7.7 
69.8 ± 8.2 
67.0 ± 7.1 

85.7 ± 4.0 
82.7 ± 5.2 
85.5 ± 4.9 
84.9 ± 4.1 
84.2 ± 5.0 
83.2 ± 4.4 
83.5 ± 4.3 
76.2 ± 4.5 
76.2 ± 5.0 
75.5 ± 5.9 

86.7 ± 6.0 
82.8 ± 6.8 
88.4 ± 5.2 
85.6 ± 4.3 
82.4 ± 3.6 
69.3 ± 8.0 
77.0 ± 8.0 
65.3 ± 6.3 
65.7 ± 5.4 
63.4 ± 7.6 

82.4 ± 4.7 
82.1 ± 5.6 
82.6 ± 5.5 
81.4 ± 6.2 
81.3 ± 4.8 
77.6 ± 4.5 
75.0 ± 8.8 
59.4 ± 7.5 
60.7 ± 5.1 
67.3 ± 5.8 

67.3 ± 4.1 
67.5 ± 5.5 
70.2 ± 3.7 
70.0 ± 4.5 
67.9 ± 4.5 
71.8 ± 6.2 
65.7 ± 7.2 
61.3 ± 6.1 
63.7 ± 7.2 
60.9 ± 6.8 

76.3 ± 4.0 
73.5 ± 4.9 
75.9 ± 5.3 
74.4 ± 4.2 
75.3 ± 4.3 
75.3 ± 5.1 
73.3 ± 4.9 
66.9 ± 4.8 
68.4 ± 4.5 
67.8 ± 4.9 

Breast 

NBC-MMC 
NMSC-MMC 
NBC-MSC 

NMSC-MSC 
GLGS 

LOOCSFS 
SVMRFE 

SFFS-LSBOUND 
SFS-LSBOUND 

T-TEST 

82.5 ± 6.0 
83.9 ± 4.6 
83.4 ± 5.8 
82.8 ± 4.4 
80.8 ± 3.7 
71.7 ± 6.5 
74.3 ± 7.1 
76.2 ± 5.2 
77.5 ± 5.6 
71.1 ± 5.3 

82.9 ± 3.5 
82.0 ± 3.3 
83.5 ± 3.8 
82.4 ± 3.8 
79.3 ± 4.5 
77.3 ± 5.2 
78.3 ± 5.2 
78.9 ± 2.8 
78.9 ± 4.2 
77.6 ± 5.2 

84.1 ± 3.0 
82.4 ± 4.3 
85.8 ± 3.1 
84.1 ± 4.0 
81.4 ± 4.1 
78.0 ± 5.8 
77.2 ± 5.3 
76.9 ± 7.3 
79.8 ± 5.2 
72.6 ± 6.3 

84.1 ± 3.6 
83.7 ± 4.7 
85.9 ± 4.7 
83.9 ± 4.0 
83.7 ± 4.6 
80.3 ± 3.8 
80.4 ± 4.1 
81.5 ± 5.3 
81.3 ± 5.2 
76.3 ± 5.7 

81.3 ± 5.7 
80.4 ± 4.0 
81.5 ± 5.3 
79.6 ± 4.0 
79.2 ± 3.9 
70.4 ± 6.5 
73.2 ± 6.6 
75.0 ± 5.3 
75.8 ± 5.5 
69.3 ± 5.3 

73.2 ± 3.8 
72.0 ± 3.8 
74.9 ± 3.3 
73.7 ± 3.9 
70.7 ± 4.6 
69.2 ± 4.7 
72.1 ± 5.8 
67.8 ± 3.3 
68.0 ± 4.7 
69.9 ± 3.6 

78.4 ± 3.4 
78.4 ± 4.3 
79.1 ± 3.0 
79.2 ± 3.8 
77.8 ± 3.7 
74.7 ± 5.1 
73.9 ± 4.5 
75.2 ± 6.8 
76.9 ± 6.3 
70.5 ± 5.8 

78.4 ± 3.8 
77.0 ± 4.3 
79.4 ± 4.1 
77.7 ± 4.0 
77.0 ± 4.2 
74.3 ± 4.2 
73.9 ± 3.7 
75.6 ± 4.9 
75.4 ± 5.2 
71.1 ± 5.8 
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Table 6-2 Numbers of occurrences of the highest mean values in Table 6-1 

# of shade # of bold Gene 
Selection HS_HR MS_HR HS_HR MS_HR 
NBC-MMC 6 1 1 0 

NMSC-MMC 4 1 2 0 
NBC-MSC 8 12 2 6 

NMSC-MSC 7 8 2 1 
GLGS 1 1 0 0 

LOOCSFS 1 2 0 0 
SVMRFE 0 1 0 0 

SFFS-LSBOUND 0 0 0 0 
SFS-LSBOUND 0 0 0 0 

T-TEST 0 0 0 0 
Total 27 26 7 7 

 
 
 

Table 6-3 Comparison of LPPO and Random Strategy 

MEAN(S_LPPO - MS_HR) , % Data 
Set 

Gene 
Selection NMSC SVM NBC RF 
NBC-MMC 0.8 -0.1 2.3 1.4 

NMSC-MMC 1.0 0.9 1.8 1.6 
NBC-MSC -0.2 0.3 1.9 1.1 Leukemia 

NMSC-MSC 1.6 0.7 2.5 1.3 
NBC-MMC 0.6 0.1 -1.0 0.4 

NMSC-MMC 1.3 -0.4 1.4 1.2 
NBC-MSC 0.4 1.2 1.5 1.4 Lymphoma 

NMSC-MSC 0.9 0.1 1.6 0.6 
NBC-MMC 0.2 0.1 0.0 0.5 

NMSC-MMC 0.9 0.4 0.9 1.1 
NBC-MSC 0.3 0.7 0.6 1.8 Prostate 

NMSC-MSC 0.4 0.8 0.2 1.0 
NBC-MMC 0.3 0.2 -1.1 0.4 

NMSC-MMC 0.6 0.0 0.1 0.3 
NBC-MSC -0.2 -0.5 -2.6 -1.3 Colon 

NMSC-MSC 0.9 0.3 -2.2 -0.5 
NBC-MMC 2.1 1.8 2.2 3.1 

NMSC-MMC 0.8 1.0 0.4 1.6 
NBC-MSC 1.2 0.0 0.6 0.6 CNS 

NMSC-MSC 1.9 2.2 2.4 1.3 
NBC-MMC 0.2 1.3 0.5 1.5 

NMSC-MMC 0.6 3.2 -1.2 0.9 
NBC-MSC 0.0 1.7 -1.6 -0.6 

Breast  
Cancer 

NMSC-MSC 1.7 1.3 -1.1 1.0 
Average 0.8 0.7 0.4 0.9 
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6.5.4 Comparison of LPPO and Random Strategy 

Table 6-3 lists the mean values of the differences between the testing values (denoted as 

S_LPPO) by applying NMSC, SVM, NBC, and RF to LPPO and ms_hr. The table shows 

that, on the average, LPPO is superior to the random strategy under the best training 

acuuracies. In summary, spanning the six benchmark data sets, in comparison with ms_hr, 

LPPO improves the testing accuracy by an average of 0.8% for NMSC, 0.7% for SVM, 

0.4% for NBC, and 0.9% for RF. 

 

6.5.5 Comparison of LPPO and varSelRF 

Fig. 6-4 shows the boxplots of the testing values of the feature sets LPPO with RFA and 

varSelRF with RF. The gene selections are NBC-MMC, NMSC-MMC, NBC-MSC, 

NMSC-MSC, and varSelRF from left to right in each subfigure. Fig. 6-4 shows that the 

testing accuracy values by applying RF to the feature set of LPPO on RFA are higher 

than the values by applying RF to the feature set from the gene selection of varSelRF. 

 

6.6 CONCLUSION  

This chapter presents a new gene selection method: Recursive Feature Addition for 

improving classifications of microarray gene expression data. This method takes 

advantage of the highest training accuracy and adds the subsequent gene recursively 

based on the similarity measures between the chosen genes and the candidates in order to 

minimize the redundancy of the genes within the selected subset of genes. In order to 

have a fair comparison across all methods, we addressed the issue of optimizing the 

number of genes for each of the methods. We proposed the Lagging Prediction Peephole 
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Optimization algorithm for optimizing the number of genes and to choose the final 

feature/gene set. We compared RFA to other gene selection methods using six popular 

benchmark datasets. Results show that, RFA outperforms the other recently developed 

methods with the use of different classifiers. Results also show that, on the average, the 

testing accuracy with the feature set chosen by LPPO is superior to the random strategy 

under the best training accuracies. Regarding the classification accuracy, LPPO also 

outperforms the popular gene selection method varSelRF. 

Fig. 6-4 Boxplots of testing accuracies of the LPPO with RFA VS varSelRF for six data 
sets. Random Forest is the testing classifier. 
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CHAPTER 7: TAGGING SNP SELECTION  FOR 

GENOME-WIDE DISEASE CLASSIFICATION 

7.1 Introduction 

SNPs promise to significantly advance our ability to understand and treat human disease. 

Comprehensive evaluation of common genetic variations through association of SNP 

structure with common complex diseases in the genome-wide scale is currently a hot area 

in human genome research. However, due to the tremendous number of candidate SNPs, 

there are a clear need to expedite genotyping by selecting and considering only a subset of 

all SNPs. This process is known as tagging SNP selection. Exploiting information 

redundancy due to associations between single nucleotide polymorphism (SNP) markers 

potentially reduces the efforts in terms of time and cost for these studies. One of the 

fundamental questions in SNP-disease association study is how many SNPs is enough to 

provide good prediction performance of disease status. This chapter presents a new 

feature selection method named Supervised Recursive Feature Addition (SRFA). This 

method combines supervised learning and statistical measures for the chosen candidate 

features/SNPs to deal with the redundancy information so that it can improve the 

classification in association studies. Additionally, this chapter also describes a Support 

Vector based lowest weight and lowest correlation Recursive Feature Addition (SVFRA) 

scheme in SNP-diseases association analysis. We implemented the proposed SRFA with 

different statistical learning classifiers for both SNP selections and disease classifications, 

and then applied them to two complex disease data sets. Results show that on the 

average, designed SRFA outperforms the well-known method of Support Vector 
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Machine Recursive Feature Elimination and logic regression based SNP selections for 

disease classification in genetic association study. 

 

7.2 Related Work 

Correlating variations in DNA sequence with phenotypic differences has been one of the 

grand challenges in biomedical research. Substantial efforts have been made to obtain all 

common genetic variations in humans, including single nucleotide polymorphisms 

(SNPs), deletions and insertions [Brookes, 1999]. The HapMap Project has collected 

genotypes of millions of SNPs from populations with ancestry from Africa, Asia and 

Europe and makes this information freely available in the public domain [The 

International HapMap Consortium, 2003, 2004, 2005]. Yet, one cannot perform a whole 

genome-wide association study directly based on the genotypes or allele frequencies of 

individual markers due to the relative low power of each SNP and the huge number of 

total SNPs. While millions of SNPs have been identified, with an estimated two common 

missense variants per gene, there is a great need, conceptually as well as computationally, 

to develop advanced robust algorithms and analytical methods for characterizing genetic 

variations that are non-redundant and identify the target SNPs that are most likely to 

affect the phenotypes and ultimately contribute to disease development. 

 

Exploiting information redundancy due to associations between SNP markers potentially 

reduces the efforts in terms of time and cost for genetic association studies [Risch, 2000]. 

However, the efficacy of searching for optimal set of SNPs has not been as successful as 

expected in theory. One primary cause is the high dimensionality with highly correlated 



    99

features/SNPs that can hinder the power of the identification of small to moderate genetic 

effects in complex diseases. The need to incorporate covariates of other environmental 

risk factors as effect modifiers or confounders further worsens “the curse of 

dimensionality problem” in mapping genes for complex diseases [Cardon and Bell, 

2001]. One of the fundamental questions for searching for set of SNPs in genetic 

association study is how many SNPs is enough to provide good prediction performance 

of disease status. 

 

Therefore, feature selection for massive genomic data in high dimension has become a 

main task to be tackled with statistical and computational efforts recently. Specifically, in 

genome-wide disease association studies, various models and algorithms have been 

proposed for selecting a subset of SNPs [Hampe et al., 2003; Sebastiani et al., 2003; 

Stram et al., 2003; Carlson et al., 2004; Halldorsson et al., 2004; Lin and Altman, 2004; 

Goplakrishnan and Qin, 2006]. Linkage Disequilibrium based methods for selecting a 

maximally informative set of SNPs for association analyses has been developed first 

[Cores and Vapnik, 1995; Vapnik, 1995; Vapnik 1998; Witte and Fijal, 2001; Tan et al., 

2005]. Zhang and Jin introduced a tagSNPs criterion based on pair-wise Linkage 

Disequilibrium (LD) and haplotype r2 measure for case control association studies [Zhan 

and Jin, 2003]. [Anderson and Novermbre, 2003] and [Mannila et al., 2003] proposed 

finding haplotype block boundaries using minimum description length. The method 

presented by [Beckmann et al., 2005] reflects the flexibility of Mantel statistics using 

haplotype sharing to correlate temporal and spatial distributions of cancer in a 

generalized regression approach for SNP selections and disease mapping purposes.  The 
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tagSNPs for unphased genotypes is designed based on multiple linear regressions [He and 

Zelikovsky, 2006]. Other test statistic approaches such as scan statistic by [Levin et al., 

2005]; score statistic by [Schaid et al., 2002], weighted-average statistic [Song and 

Elston, 2006] for disease mapping in case-control studies were proposed for SNP 

selection in genetic association studies. 

 

Recently, Schwender and Ickstadt demonstrated logic regression [Kooperberg et al., 

2001] based identification of SNP interactions for the disease status in case-control study 

and proposed two measures for quantifying the importance of feature interactions for 

classification. In comparison with some well-known classification methods of CART 

[Breiman et al., 1984], Random Forests [Breiman, 2001] and other regression procedures 

[Witte and Fijal, 2001], logic regression has shown a good classification performance 

when applied to SNP data [Schwender and Ickstadt, 2006]. 

 

In this chapter, a new feature selection method named Supervised Recursive Feature 

Addition (SRFA) is presented. This method combines supervised learning and statistical 

measures for the chosen candidate features/SNPs in order to deal with the redundancy 

information so that it can improve the classification and prediction performance. We 

implemented our SRFA with different statistical learning classifiers for both SNP 

selections and disease classifications and compared their performances to popular 

classification models, such as conditional logistic regression, Logic regression, and 

Support Vector Machine Recursive Feature Elimination (SVMRFE). Additionally, we 

propose a support vector based lowest weight and lowest correlation feature selection 
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scheme for SNP-diseases association analysis. We applied these proposed approaches to 

two complex SNP-disease data sets: Myocardial Infarction Case & Control (MICC) data 

set and a subset of The North American Rheumatoid Arthritis Consortium (NARAC) data 

to evaluate and to demonstrate our proposed SRFA with different supervised learning 

classifiers for both SNP selections and disease classifications. 

 

7.3 Supervised Tagging SNP Selection 

7.3.1 Supervised Recursive Feature Addition Algorithm for SNP Selection 

SRFA combines supervised learning and statistical similarity measures between the 

chosen features and the candidates and is presented as follows: 

 

Step 1: Each individual feature is ranked from the highest classification accuracy to the 

lowest classification accuracy with the use of a supervised learning classifier. 

 

Step 2: The feature with the highest classification accuracy is chosen as the first feature. 

If multiple features achieve the same highest classification accuracy, the one with the 

lowest p-value measured by score test-statistics is chosen as the first element. At this 

point the chosen feature set, G1, consists of the first feature, g1, which corresponds to 

feature dimension one. 
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Step 3: The N+1 – dimensional feature set, GN+1 = {g1,  g2 ,…, gN , gN+1} is produced by 

adding gN+1 to the previous N-dimensional feature set, GN = {g1,  g2 ,…, gN}. gN+1 is 

chosen as follows: 

 

Temporarily add each feature gi (i  ≠ 1, 2, …, N) outside of GN to GN: The classification 

accuracies of each feature set GN + {gi} is recorded, the gc with the highest classification 

accuracy is marked and put into the set of candidates: C. Generally, the set of candidates 

consists of many features, but only one feature will be selected to be included in the 

feature set next as gN+1. We choose the (N+1)th feature: gN+1 from candidate set C 

according to statistical similarity between the chosen features and candidates. We call 

this step Candidate Feature Addition. The goal is to obtain a most informative and least 

redundant feature set. The statistical similarity measure is based on the Spearman 

Correlation Coefficient (for categorical features/SNPs) between the chosen feature gn (gn 

∈  GN , n = 1, 2,…, N) and the candidate gc (gc ∈  C, c= 1, 2 … m; m is the number of 

elements in C).  Spearman's rank correlation coefficient, often denoted by the Greek letter 

ρ (rho), is a non-parametric measure of correlation – that is, it assesses how well an 

arbitrary monotonic function could describe the relationship between two variables, 

without making any assumptions about the frequency distribution of the variables. Unlike 

the Pearson product-moment correlation coefficient, it does not require the assumption 

that the relationship between the variables is linear, nor does it require the variables to be 

measured on interval scales; it can be used for variables measured at the ordinal level. 
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In principle, ρ is simply a special case of the Pearson product-moment coefficient in 

which the data are converted to ranks before calculating the coefficient. In practice, 

however, a simpler procedure is normally used to calculate ρ. The raw scores are 

converted to ranks, and the differences D between the ranks of each observation on the 

two variables are calculated. ρ is then given by: 

ρ = 1 - 
2

2

6

( 1)

D

N N −

∑                                                                                         (7-1) 

where, D = the difference between the ranks of corresponding values of X and Y, and N = 

the number of pairs of values. 

 

The Sum of the square of the Correlation (SC) is calculated to measure the similarity and 

is defined as follows: 

SC(gc) = ∑
=

N

n 1
ρ2(gc, gn),  n = 1, 2… N                                                       (7-2) 

where gc ∈  C, gn ∈  GN. 

 

The selection of gN+1 follows the qualification that the SC value in (7-2) is the minimum: 

   {gN+1 | gN+1∈C ∩ SC(gN+1)=min(SC(gc)),gc∈C}                                       (7-3) 

This strategy is called Minimum SC (MSC). 

 

Step 4: A feature is recursively added to the chosen feature set from steps 1-3 with 

supervised learning and the similarity measures until classification accuracy stops to 

increase. 
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Our SRFA based MSC is denoted as classifier-MSC, for example, if the classifier is 

Naive Bayes Classifier (NBC), we call the feature selection NBC-MSC. SRFA here can 

not only provide us the feature selection procedure but also it could be directly used for 

further classification and prediction purposes by using learning classifiers that may differ 

from feature selection classifiers. 

 

7.3.2 Support Vector Based Recursive Feature Addition Algorithms 

Support Vector Machines (SVMs) [Cores and Vapnik, 1995; Vapnik, 1995] have been 

widely applied to pattern classification problems and non-linear regressions. The basic 

idea of the SVM algorithm is to find an optimal hyper-plane that can maximize the 

margin between two groups. The vectors that are closest to the optimal hyper-plane are 

called support vectors. [Guyon et al., 2002] proposed a feature selection, called Support 

Vector Machine Recursive Feature Elimination (SVMRFE). Based on the SVMRFE and 

our SRFA discussed earlier, we propose a Support Vector based lowest weight (or 

maximum margin width) and lowest correlation feature addition scheme, called Support 

Vector based Recursive Feature Addition (SVRFA) described as follows: 

 

1. Train an SVM on each individual feature in the data set given an SVM with weight 

vector k k kk
w y xα= ∑
r uur  

 

2. Rank features according to criterion c for feature i: ci = (wi)2. The features 

corresponding to the lowest c are picked up as candidates. The candidate with the highest 

statistical significance is the first element of the feature set. At this point the chosen 
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feature set, G1, consists of the first feature, g1, which corresponds to feature dimension 

one. 

 

3. The (N+1)st  dimensional feature set, GN+1 = {g1,  g2 ,…, gN , gN+1}  is produced by 

adding gN+1 to the N dimensional feature set, GN = {g1,  g2 ,…, gN}. The choice of gN+1 is 

described as follows: 

 

Temporarily add each feature gi (i  ≠ 1, 2, …, N) outside of GN to GN, train an SVM on 

feature set GN + {gi}, update c, and calculate the measures after introducing gi as follows: 

SW(gi) =  1 1 2

1 1

N N

k kk k
c w+ +

= =
=∑ ∑                                                                      (7-4) 

MW(gi) =  2max( ) max( ), 1, 2... 1k kc w k N= = +                                               (7-5) 

 

Here we have two strategies to choose candidates as gN+1, corresponding to measures SW 

and MW, respectively. The candidate set is denoted as C. The first strategy is to pick up 

the feature with the minimum SW into C; and the second one is according to the 

minimum MW. 

gj ∈ C |  SW(gj) = min(SW)                                                                         (7-6) 

gj ∈ C |  MW(gj) = min(MW)                                                                       (7-7) 

 

Whether set C consists of multiple candidates or a single candidate, only one feature will 

be chosen as gN+1. We call the support vector based recursive feature addition according 

to Minimum SW in (7-6) and with Minimum SC in (7-3) MSW-MSC. Similarly we call 
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the support vector based feature addition according to Minimum MW in (7-7) and with 

Minimum SC in (7-3) MMW-MSC. 

 

7.4 Experiments and Results 

7.4.1 Materials  

Application 1: The role of genes and environments in the link between important health 

conditions: Periodontal Disease (PD) and Cardiovascular Disease (CVD). Cardiovascular 

disease is the number one cause of death and disability in the western world. Almost 1 

million Americans die of CVD each year, which adds up to 42% of all deaths. Numerous 

clinical and epidemiological studies have shown a consistent association between PD and 

CVD and the link between these two diseases may be the result of common 

environmental exposures and potential genes that may regulate the individual response to 

these exposures. The identification of SNPs that influence the risk of diseases through 

interactions with other SNPs and environmental factors remains a statistical and 

computational challenge. 

 

Our Myocardial Infarction Case & Control (MICC) data set is a result of a population 

based study. The sample included residents of Erie and Niagara counties in New York 

State and all were in age group 35 to 69 years. There were 614 white male patients with 

Myocardial Infarction matched with 614 control males (without CVD) by age (+/- 5 year) 

and smoking habits; 206 white pre and postmenopausal females with MI matched with 

412 control females (without CVD) by age (+/- 5 year), menopausal status, years since 
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menopause (+/- 2 year), and smoking habits. Diabetics were excluded. The features in the 

data set included 29 environmental variables, such as smoking status, menopausal status, 

blood pressure, blood cholesterol, body mass index, drinking status, etc. and 2 protein 

variables (ACHMN and CALMEA) that were known to be related to periodontal disease. 

Selection of genetic variables was based on the well known Seattle web site 

(http://pga.mbt.washington.edu/) using candidate approach, which included 31 SNPs in 9 

genes as follows: IL 1 beta gene: rs1143634, rs16944, rs3917354, rs3917356; IL 6 gene: 

rs2069825, rs1818879, rs1548216, rs1800795; MMP3: rs522616, rs595840, rs602128, 

rs680753; TF: rs1324214, rs1361600, rs3354, rs391763. The original MICC data set 

contained some missing data. In our experiments, we filtered out the missing data and the 

associated observations. This data set was mainly used to evaluate the SNP-environment 

and variable-disease associations, especially the effects of SNPs and environmental 

variables to the disease. 

 

Application 2: Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic 

inflammation of the joints, the tissue around the joints, or other organs in the body. RA 

affects more than two million people in the United States. 70 percent of people with RA 

are women. While women are two to three times more likely to get RA, men tend to have 

more severe symptoms. It afflicts people of all races equally. Onset usually occurs 

between 30 and 50 years of age.  Data for this analysis was provided as part of Genetics 

Analysis Workshop 15. GAW15 focused on genetic factors that predispose for 

rheumatiod arthritis. The North American Rheumatoid Arthritis Consortium (NARAC), 

lead by Peter Gregersen, has provided microsatellite and SNP scans, quantitative 
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phenotypes, and clinical measures, with additional genotype data provided by Robert 

Plenge and Ann Begovich. We studied the SNP case-control data named 

“CHR18SNP.dat” offered by NARAC. In the data file, a dense panel of 2300 SNPs was 

genotyped by Illumina for an approximately 10 kb region of chromosome 18q. These 

markers were individually genotyped on 460 cases and 460 controls. Controls were 

recruited from a New York City population. The objective of this study is to identify 

SNPs of chromosome 18 that are significantly associated with rheumatoid arthritis. The 

significant SNPs identified here could be used as a starting point for biologists 

developing genetic tests that indicate increased risk of developing rheumatoid arthritis. 

 

7.4.2 Implementations and Comparison Studies 

We implemented SRFA with various statistical learning classifiers (with different 

complexity) proposed in section 2.1. The learning classifiers for feature selections were 

Naive Bayes Classifier (NBC) [Pedro and Pazzani, 1997], Nearest Mean Scaled 

Classifier (NMSC) [Heijden et al., 2004] and Dynamic Evolving Neuro-Fuzzy Inference 

System (DENFIS) [Kasabov, 2002; Kasabov and Song, 2002]. We recorded them as 

NBC-MSC, NMSC-MSC and DENFIS-MSC. Several classifiers including NBC, NMSC, 

SVM, uncorrelated normal based quadratic Bayes classifier that was recorded as UDC 33 

were applied to the feature sets selected by the above SRFA in order to compare the 

performance. Our goals are (i) to evaluate feature selection procedures and find the 

number of features required for the best classification accuracy; (ii) to evaluate various 

learning approaches; (iii) to investigate the redundancy issues in SNP data for improving 

the classification performance. 
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We also implemented and tested our SVRFA: MSW-MSC and MMW-MSC methods 

proposed in section 2.2. For comparison purposes, other popular methods, such as 

Support Vector Machine Recursive Feature Elimination (SVMRFE), logistic regression 

based Wald t-test and Logic regression (LOGICFS) for SNP selections and disease 

classifications were also implemented using the R programming language. We also 

applied SVM and other traditional neural network classifiers such as Levenberg-

Marquardt trained feed-forward neural network classifier, back-propagation trained feed-

forward neural network classifier 33 for different feature selections on two real data sets. 

Unfortunately, these learning classifiers didn’t work well. Therefore, here we did not list 

their experimental results. 

 

Cross-Validation (CV) is widely used for selecting tuning parameters and optimizing the 

number of selected genes in the context of building classifiers to avoid over-fitting. We 

split the data into training and testing samples, build the model based on training samples 

only and evaluate the performance on the testing samples only based on cross-validation 

(CV). We performed 20 runs and used 50% for training and 50% for testing for each run 

and compared the average testing accuracy. 

 

7.4.3 Results 

Fig. 7-1 displays the testing accuracies of NBC, NMSC, SVM, and UDC in the analysis 

of the MICC data set: 4 typical runs out of 20 experiments are shown. The legend marks 

the different feature selections. Fig. 7-1 indicates that, NBC-MSC and NMSC-MSC 
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feature selections are better than MSW-MSC, MMW-MSC, and SVMRFE; T-test is the 

worst. The comparison shows that both support vector based feature addition and SRFA 

with the use of different learning classifiers, the five feature selections, (MSW-MSC, 

MMW-MSC, NBC-MSC, NMSC-MSC, and DENFIS-MSC) on the average, outperform 

the popular method SVMRFE based SNP selections for disease classification in genetic 

association study. This demonstrates that feature addition in general is superior to feature 

elimination for this particular data set. Also, on the average, especially under low feature 

dimension, supervised recursive feature additions (SRFA) are superior to support vector 

based feature selections. Regarding the classification performances of different learning 

classifiers, on the average, NBC, NMSC, and SVM were better than UDC. 

 

 

 

 
 
Fig. 7-1 The testing accuracies in applying NBC, NMSC, SVM, and UDC to MICC data 
set. The legend marks the different feature selections. 
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Fig. 7-2 presents the average testing accuracies on the NARAC CHR18SNP case/control 

data for feature dimensions 1 to 200 with the use of NBC and NMSC on the following 

feature selections (the legend marks the different feature selections): MSW-MSC, 

MMW-MSC, NBC-MSC, NMSC-MSC, SVMRFE, TTEST, and nonparametric 

RANKSUM. Fig. 7-2 indicates that the testing accuracies of TTEST and RANKSUM are 

the worst. This may be due to their selections ignoring the redundancy among SNPs, 

while the other five approaches (two SVRFA and three SRFA) using MSC with 

Spearmen Correlation Coefficients don’t. MSC combined with RFA helps to improve the 

classification accuracy. 

 

We noticed that as the number of features increases, the performance of the complex 

model, such as SVMRFE increases while simpler models stay at the same level. The 

reason behind this may be due to the fact that these models may detect the epistatic 

effects (gene-gene interactions), those that do not exhibit statistically significant marginal 

effects. The detection of higher dimensions of many epistatic effects requires even more 

complex models. In contrast, when lower levels of LD are observed at given loci, a larger 

number of SNPs are required to predict disease status, such as in the NARAC 

CHR18SNP data set. Overall, the testing accuracies of NMSC-MSC are the best, 

followed by NBC-MSC, MMW-MSC, MSW-MSC and SVMRFE; TTEST and 

RANKSUM are the worst. Comparing NBC to NMSC, on the average, the performance 

of NMSC is superior to NBC. Figures 7-1 and 7-2 also manifest that the classification 

techniques are strictly paired up with feature selections. With the use of NBC, the 
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performance of NMSC-MSC is not so good, but with the use of NMSC, the feature 

selection NMSC-MSC performed the best. 

 

 
Fig. 7-2 The testing accuracies in applying NBC and NMSC to NARAC CHR18SNP data 
set. The legend marks the different feature selections. 
 

Tables 7-1 and 7-2 list the testing accuracies and the standard errors associated with the 

highest training accuracies for given classifiers (NMSC, NBC, SVM, UDC) under 

different feature selections (two SVRFA: MSW-MSC, MMW-MSC; three SRFA: NBC-

MSC, NMSC-MSC, DENFIS-MSC; three popular approaches: SVMRFE, Logistic-

Wald-t, LOGICFS) for the MICC data set and NARAC CHR18SNP, respectively. In 
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Table 7-1, the testing accuracies of LOGICFS were obtained from the 31 SNPs only in 

the MICC data set. Table 2 indicates that, supervised learning based feature selection 

NMSC-MSC with the use of NMSC outperforms others, followed by NBC-MSC with the 

use of NMSC. Generally, support vector based feature selections are superior to 

LOGICFS, and LOGICFS is better than the feature selections based on parametric and 

non-parametric tests. Regarding support vector based feature selection, on the average, 

MMW-MSC outperformed MSW-MSC and SVMRFE. 

Table 7-1 Testing accuracies associated with the highest training accuracies under 
different feature selections for the MICC data set  
 

Testing accuracy (mean value ± standard deviation, %) 
Feature Selection NMSC NBC SVM UDC 

MSW-MSC 76.0 ± 3.4 75.1 ± 3.0 73.1 ± 4.5 73.6 ± 2.9 

MMW-MSC 77.4 ± 2.9 75.9 ± 3.0 74.4 ± 2.3 74.8 ± 4.6 

NBC-MSC 75.1 ± 3.1 73.2 ± 2.4 74.2 ± 4.1 75.2 ± 2.6 

NMSC-MSC 75.0 ± 4.5 75.0 ± 2.9 74.0 ± 3.7 72.7 ± 3.9 

DENFIS-MSC 76.9± 3.2 74.2 ± 3.4 74.9 ± 4.4 75.6 ± 2.8 

SVMRFE 77.0 ± 4.2 73.9 ± 2.7 73.1 ± 4.0 74.4 ± 3.2 

T-TEST 75.6 ± 2.6 76.4 ± 3.0 74.5 ± 3.1 75.9 ± 3.6 

LOGICFS 54.4 ± 1.5 

 

Table 7-2 Testing accuracies associated with the highest training accuracies under 
different feature selections for the NARAC CHR18SNP data set 
 

Testing accuracy (mean value ± standard deviation, %) Feature Selection 
NMSC NBC 

MSW-MSC 71.3 ± 0.7 68.5 ± 0.7 

MMW-MSC 71.4 ± 0.4 69.3 ± 0.3 

NBC-MSC 74.3 ± 0.6 68.3 ± 0.7 

NMSC-MSC 77.7 ± 0.7 67.7 ± 0.3 

SVMRFE 67.8 ± 0.8 68.3 ± 0.8 

T-TEST 65.4 ± 0.5 66.1 ± 0.8 

LOGICFS 67.1 ± 2.1 
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7.5 Discussion 

Exploiting information redundancy due to associations between single nucleotide 

polymorphism markers potentially reduces the efforts in terms of time and cost for 

studies since currently it is still too expensive to genotype all available SNPs across the 

human genome. For economic and quick diagnostic, we need advanced approaches to 

mine the minimum SNPs with the highest prediction accuracy for complex diseases. In 

this chapter we propose several new statistical learning algorithms, including SRFA and 

SVRFA to deal with the redundancy in the highly correlated SNP data for finding the set 

of SNPs enabling the most efficient classification of individuals in disease risk, which is 

one of the ultimate goals of human genomic research. We compared our proposed 

approaches with various settings (learning classifier with different complexity) to some 

popular methods for SNP-disease association study to see the improvement made by the 

proposed methods. 

 

Compared to the well known feature selection methods SVMRFE and LOGICFS, our 

methods gained higher testing accuracy on the average. When SRFA is compared to two 

learning classifiers (NMSC-MSC and NBC-MSC), on the average, NMSC-MSC is better. 

Regarding SVRFA of MSW-MSC, MMW-MSC, and SVMRFE, our proposed MMW-

MSC is the best. Also, on the average, SRFA performed better than SVRFA. Our study 

showed that using MSC for reducing the redundancy does not decrease the classification 

accuracy; but instead MSC combined with SRFA helps to improve the classification 

accuracy. 
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The training model is an import factor in the evaluation of the testing accuracy. In our 

experiments, the training with the use of DENFIS and other neural network classifiers 

always achieve very high training accuracy, but the testing accuracy is not so good. The 

occurrence of the over-fitting problem is probably related to the relatively small sample 

size, since complex models, such as DENFIS, almost always require large sample size to 

elicit their effects. While the complexity of the model increases in order to achieve higher 

training accuracy, the requirement for more training sample also increases. If the sample 

is not large enough, the relation and model mined from the training samples are not 

suitable for testing, and as a result over-fitting happens. This is the reason that complex 

models fit training samples very well, but not necessarily fit the testing samples. 

 

Another point worthy of mentioning is that the learning classifier and feature selection 

are strictly paired in our models. For instance, NMSC-MSC with the use of NMSC was 

the best in the experiments on NARAC CHR18SNP, but NMSC-MSC with the use of 

NBC was not so good. The issue of environmental variables also requires discussion. 

With the inclusion of environmental variables in the MICC data we greatly improved the 

prediction and classification performances. For instance, LOGICFS only achieved 

54.4%+/-1.5% correct classification rate on the testing data without the environmental 

variables. Also, SRFA provided a low (<60%) correct classification rate on the testing 

data when only using the SNPs, but a higher (>73%) correct classification rate after 

including the environmental variables as well. This confirms that in today’s common, 



    116

complex diseases, genetic and environmental variables together cause the disease and that 

information in necessary on both for high quality predictions and classifications. 

 

Additionally, when SVM was applied to the feature sets extracted from the NARAC 

CHR18SNP genotype data, the classification performance was pretty poor. However, 

SVM worked well on the feature sets extracted from the MICC data. NARAC 

CHR18SNP consists of categorical SNP data only, while the MICC data set consists of 

many environmental variables of which most follow continuous distributions and have 

important impact on the classification. As a result, the classification with the use of 

support vector machines on NARAC CHR18SNP is not so good. 

 

Our study shows that, if high level LD occurred in the population that can be captured by 

the classification models, only one, two or at most five SNPs would be enough to obtain a 

good predictive capacity. In the MICC data regions were pre-selected with high level LD 

using candidate gene approaches. After applying our methods, it was evident that with 3-

5 variables we can achieve at least 79% classification accuracy (Fig. 7-1). On the other 

hand SVMRFE may capture some lower level LD and hence when the number of SNPs 

increases to 11-15, it achieved similar accuracies to our SRFA. In this case the simple 

classifier combined with our SRFA, such as NMSC-MSC or NBC-MSC is sufficient and 

performs better than complex models, such as SVMRFE, DENFIS, or LOGICFS. In 

contrast, when lower levels of LD are observed at given loci, a larger number of SNPs are 

required to predict disease status, such as in the case of the NARAC CHR18SNP data set. 

This demonstrates that the classification accuracy can be improved if prior knowledge, 
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such high LD regions are utilized in the selections. Therefore, finding high level LD with 

our SRFA may directly reduce the cost of genotyping. Further investigation of whether 

there is power reduction compared to the selected SNPs with direct assays of all common 

SNPs will be conducted. 
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