The SkipList object

TCC

A SkipList object is a container object for storing objects according to some ordering
relation. Objects may be added or deleted at any time. When retrieved, they will be
returned in the order defined by the ordering relation.

The ordering relation is defined by a comparator method that you must provide when creat-
ing a SkipList. This method must be able to compare any two objects A and B stored in
the SkipList and specify whether A comes before B or after B, or whether they are equal
in the ordering relation. The SkipList object is stable, that is, if two objects O; and O,
are inserted, and the comparator method ranks them as equal, they will be ordered O;, O,
according to the order of their insertion.

Methods

Use the Skip_List_New() method to create a SkipList. The remaining methods are used
to add, delete, and retrieve objects; in those methods, the skipList argument is always the
value returned by Skip_List_New().

[Skip_List_New() |

To create a new SkipList object, use this method:

Skip_List_New (comparator, allowDups, maxLevels)

where the arguments have these definitions:

comparator

allowDups

maxLevels

A method with calling sequence comparator(a,b)
such that the return value is —1 if a is before b, 0
if they are equal, and 1 if a is after b.

If this optional argument has a value other than &null,
the SkipList object will allow you to insert more
than one object with the same ordering. Otherwise
attempts to insert a duplicate object will fail.

Provision of this argument is necessary only for main-
taining very large sets of values. If you are storing
more than a million objects, pass this argument as the
smallest power of 4 that exceeds the cardinality of the
set you are storing (default is 10, suitable for storing
about a million objects).

The return value is a SkipList object.

[Skip_List_Insert()]

To add an object to a SkipList, use this method:

Skip_List_Insert (skiplist, value)

where value is the object to be inserted. Note that value must be in the domain of the

comparator () function.

This method fails if the object does not allow duplicates and there is already an object in
skipList with the same value, as determined by the comparator () function.

New Mezico Tech Computer Center

The SkipList object

Page 1

[Skip_List_Delete()]

To delete an object from a SkipList, use:
Skip_List_Delete (skipList, value)

where value is an object in the domain of the comparator () function that is used to locate
the object to be deleted. The first or only object that is equal to value (according to the
comparator () function) will be deleted. This function fails if no such objects exist in the
skipList.

[Skip_List_Search()]

To find an object in a SkipList:
Skip_List_Search (skipList, value)

This method generates all objects from the given skipList that are equal to value, as
determined by the comparator() function. If there are no such objects, the method fails.
If the list allows duplicates, and there are multiple objects that match, the objects will be
returned in the same order they were inserted.

|Skip_List_Search_Range()]

You can request all the objects in a given range by:
Skip_List_Search_Range (skipList, value, stopValue)

This method will generated all the objects in the given skipList whose ordering is >value
and <stopValue.

For example, suppose that the values in a list are ordered by a simple string as key, and the
comparator (a,b) function returns —1 if a<<b, 0 if a==b, and 1 if a>>b. Then to generate
all the values whose keys start with the letter C, you would use:

every value := Skip_List_Search_Range (skipList, cObject, dObject) ...
where cObject has the key "C" and dObject has the key "D".

If the value argument is &null or omitted, the generated values start at the beginning
of the sequence. Similarly, if the stopValue argument is &null or omitted, the generated
values will go all the way to the end of the sequence. So this call would generate all the
items in the entire list in sequence:

every value := Skip_List_Search_Range (skipList) ...

Retrieving statistics
There are three methods you can use to find out how efficient the searching is:

Skip_List_N_Items (skipList)
Skip_List_N_Searches (skipList)
Skip_List_N_Compares (skipList)

These methods return, respectively: the number of items contained in the list; the number
of times you have searched the list to find an item (this includes searching for the point of
insertion when adding new elements); and the number of times two items have been com-
pared. If things work correctly, the number of compares per search should be proportional
to the log of the number of items in the list.

New Mezico Tech Computer Center The SkipList object Page 2

Implementation

The technique used for storing objects is “skip lists,” as described in Skip lists: a probabilistic
alternative to balanced trees, by William Pugh, Comm. ACM 33(6)668-676, June 1990.

It would suffice for correctness just to keep all the objects in an ordinary linked list. However,
searching a linked list has a time complexity of O(n/2).

Pugh’s idea was to set up a number of linked lists, numbered starting at 1, such that:
e Every object is in list 1, ordered from lowest to highest key.
e List 4 visits a subset of the objects in list (¢ — 1), but still in order by key.

In practice, when each new element is inserted, it is always added to list 1, and it is also
added to a random number of higher-numbered lists, where each higher level is less likely.

With this structure, the higher-numbered linked lists are more and more sparse. Therefore,
the algorithm for searching a skip list is:

1. Search the highest-numbered list until you find either the desired item or one that is
beyond the desired item.

2. If the desired item is not in the highest-numbered list, back up to the preceding item,
move down one list, and search that list.

3. Repeat until either the desired item is found or it is not found in list 1.

Here is an example of a small skip list containing some short character strings in lexical
order. This list has a maximum of 8 levels:

8 >
7 -
6 >
. maxLevel s > :
3 ? o ?
. hLevel s 2 - > >
1 ? o ? o ? o
. heads ra i "d "d E .terninator

This picture shows five strings, "a", "c", two copies of "d", and "f".

The field names refer to the Icon record structure for the SkipList object. The item
labeled .heads contains the heads of all the lists. Each list terminates with a pointer to the
item labeled .terminator. Field .maxLevels is the maximum number of linked lists (8 in
the figure), and .nLevels is the number of the highest list that actually contains a value.

Written by John W. Shipman (john@nmt.edu). This version printed 1996-12-13.

New Mezico Tech Computer Center The SkipList object Page 8

