CS 423 Final Examination Name

Answer all questions. This is an closed book, no electronics, open note (up to 30 sheets of paper) exam.

1. (20 points) In mainstream languages, to test whether a value x is in the range between two other
values 1ow and high, you would write ((low < x) && (x < high)). In this case, the result of
the less-than operator is a boolean (or a 0 or 1 in C/C++). In contrast, Python allows you to write the
simpler and more readable notation (low < x < high). Is this feature in Python lexical, syntactic,
or semantic? What is the result type produced by the less-than operator in order for this notation to be
legal? Did you have to support this feature in PunY? If so, how did you, and if not, how might you go
about it?

2. (10 points) There were some issues in the PunY test programs, where the name string was used
instead of str to denote the string type. For example, consider the (attempted) variable declaration

s : string
If I saw your compiler printing a syntax error message saying the token ing was appearing in an
illegal location in the code, on a line where the only occurrence of ing was in an instance of string,
what problem is the compiler having, and how might it be fixed?

3. (20 points) Write a regular expression for Python lists of integers constructors consisting of an open
square bracket followed by 0 or more comma-separated integers, followed by a closing square bracket.
Why might the Python language designers choose to form list constructors out of many tokens instead
of resolving them entirely with a regular expression like this?

4. (10 points) Near the start of this semester, students were given a grammar for Python that came
directly from the “real” C Python 3.x source code distribution that can be understood to be the official
Python language grammar. Why was that grammar not that great for our project? What changes did you
have to make to that grammar in order for us to use it?

5. (10 points) Consider a recursive context free grammar rule in Bison, such as
E:E+E;
True or False:

5.a) The production rule is left-recursive.

5.b) The production rule is right-recursive.

5.c) The production rule is written in syntactically correct Bison format.

5.d) The production rule is logically complete and usable as-is.

5.e) The production rule can produce many instances of E chained together by plus operators.

6. (10 points) Fill in the blanks.

Populating a symbol table is performed using a algorithm that visits the nodes in the
syntax tree. The leaf nodes consisting of are inserted into the symbol table whenever the
surrounding context indicates that a is being declared.

7. (20 points) Multiple choice. Circle the correct answer(s) to the following question, if there are any.
What is the . place semantic attribute used for in code generation as taught this semester?

a) .place stores the location of a tree node within the syntax tree.

b) . place indicates the line number where a leaf occurred within the source code.
c) .place gives the order competing instructions go during a race condition.

d) .place contains the GPS locations where code was originally written.

8. (30 points) In this semester we did not implement PunY class syntax, but we did need to support the
syntax x . f (params) where x is a Python value, f is a method name, and params are zero or more
parameters for that method. Why did we need to support this syntax? Describe a plausible method by
which a compiler might implement this syntax for built-in methods of built-in types in the language.

9. (20 points) Analyze the Python code fragment below. Draw syntax trees for the executable
statement(s). Report what a PunY compiler's type checker would do in order to determine whether the
types were correct. Then report what the outcome of PunY type checking would be.

def main () :
J : int
j = input (“Enter a number ")
print (Mt was: 7, J - 2)
main ()

10. (20 points) Draw a syntax tree for the following Python code. Generate intermediate three address
code (in the form of a linked list diagram) for them.

def main () :
J : int
3 =0
while 7 < 3:
print (“j2: "7, J - 2)
j=3+1
main ()

11. (20 points) In this semester you had a choice between generating VM bytecode (Ucode) or writing a
transpiler that generates Unicon source code. In most respects, the transpiler option would be easier.
Describe technical reasons why generating VM bytecode might be easier than a transpiler for some

languages and/or some language constructs.

12. (20 points) What are the primary tasks involved in final code generation? If you had had to write a
compiler that generates native x86_64 code for PunY, what code generation strategy would you use for
language constructs such as dictionaries (dicts) that are not built-in to the x86_64?

