
Godiva: a goal-directed dialect of Java
Ray Pereda and Clinton Jeffery

University of Texas at San Antonio

Division of Computer Science

6900 North Loop 1604 West
San Antonio, Texas 78249-0667

210-458-5557

{rpereda, jeffery}@cs.utsa.edu

1. ABSTRACT
Godiva is a dialect of Java that provides
general purpose abstractions that have been
shown to be valuable in several very high level
languages. These facilities include additional
built-in data types, higher level operators,
goal-directed expression evaluation, and
pattern matching on strings. Godiva�s
extensions make Java more suitable for rapid
prototyping and research programming.
1.1 Keywords
Programming language design, goal-directed evaluation,
very high level languages, Java

2. INTRODUCTION
Very high level languages such as Tcl[16] and Perl[20] are
becoming increasingly popular relative to traditional
languages like C/C++ and Fortran. By providing notations
for application-level concepts instead of abstractions of
machine-level capabilities, these languages reduce the
programming effort required for most applications.

These languages emphasize practical, rather than
theoretical considerations. Ease of use comes from
programming constructs that allow concise solutions to a
wide variety of problems. In domain specific languages
like MATLAB[7], there is linguistic support for objects
like matrices. The language makes it intuitive to translate
problem descriptions and solutions into code. A problem
well stated is half solved, and half programmed.

Church�s conjecture states that any computation

for which there exists an effective procedure can be
realized by a Turing machine[1]. The conjecture only says
that if a computation is do-able in one of the Turing-
complete languages, it is doable in any of them. Its speaks
nothing about the amount of human effort needed to solve
a task using a particular programming language.

The Sapir-Whorf[21] hypothesis states that the
structure of the language one speaks influences the way
one thinks. It is a small step to say that the structure of a
language in which one writes programs influences the way
one thinks. Testing this hypothesis is beyond the scope of
this paper, but it will suffice to say that many programs
written in Perl and Tcl would not have been written had
the programmer had a more traditional language as his
only tool. Godiva gleans the best ideas in several very high
level languages and delivers that expressive power with a
mainstream (C-based, Java-based) syntax.

Many of the features offered in higher level
languages can be implemented in a lower level language
via an application programmer interface, API. If APIs
were sufficient, there would be no demand for higher level
languages, but this is not the case. APIs cannot introduce
novel control structures or expression semantics, and even
when such facilities are not required, there are advantages
to providing syntactic support for commonly used
functionality. The linguistic support of a set of API
function calls is modest. Language embodiment of these
features makes them notationally more concise and
therefore easier to use, but it does more than that. Features
in the core of the language are more familiar to the
community of language users and likewise the language
implementers are committed to having these features in
their tools. This leads to greater software reuse because it
discourages repeating much work that has been done many
times before.

Godiva was built by extending a mainstream
general-purpose language in order to show that very high
level languages need not be idiosyncratic or domain
specific in nature. Java was chosen because it is simple to
the point of being spartan. It has been well adopted by
industry and has attained mainstream status.

Structure of this report. This paper is organized as
follows. Section 3 gives a brief overview of Godiva.
Section 4 introduces goal-directed expression evaluation.
Section 5 focuses on Godiva�s innovations in goal-directed
expression semantics. The non-obvious features are
accompanied by short Godiva code examples. Section 6
describes goal-directed pattern matching on strings.
Sections 7 and 8 present related work and conclusions.

3. OVERVIEW OF GODIVA
Godiva adds the following built-in data types to

Java: arbitrary precision integers, strings, lists, associative
tables, and sets. Assignment, comparison, and other
operators are extended to work with entire collections of
elements at a time. These features and others such as
automatic insertion of semi-colons are detailed in the
Godiva language reference[10].

Java avoids the whole issue of multiple
inheritance. Instead it relies on the Interface facility.
Interfaces do not allow for unanticipated code reuse, in
that a programmer has to know which methods to
implement ahead of time if the class were to later be re-
used via an interface. Godiva uses closure-based
inheritance (CBI)[9], which provides multiple inheritance
and resolves inheritance conflicts using a very simple set
of rules. Godiva�s subversion of Java�s purist object model
also includes C-style global functions and variables via an
implicit Global package.

This paper focuses on the two most distinguishing
features in Godiva, which are goal-directed evaluation and
pattern matching. The design of these features builds on
experience gained working with Icon[4], a descendent of
SNOBOL4[5]. Most programmers have seen goal-directed
programming in logic programming languages such as
Prolog. Icon and Godiva do not rely on goal-directed
programming as the sole means of control flow as
Prolog[19] does, but instead support goal-directed
backtracking within specific syntactic contexts, called
bounded expressions.

Facilities for pattern matching on strings are
present in Godiva in the form of matching methods whose
bodies consist of a sequence of regular expressions with
intermixed code blocks. Matching methods exploit goal-
directed expression semantics to facilitate the splicing of
ordinary code into the midst of regular expressions.

4. GOAL-DIRECTED EXPRESSION
EVALUATION

Goal-directed evaluation eliminates the need for
many loops, shortening code and eliminating certain kinds
of errors. The basic mechanisms of goal-directed
evaluation are generators and control backtracking. The
examples are written in Godiva, but Godiva�s changes to
the expression semantics introduced by Icon are modest.

This section presents an overview of goal-directed
expression evaluation semantics, and discusses two
frequent sources of errors introduced by goal-direction in
Icon. The following section discusses features of Godiva�s
semantics for goal-direction that eliminate these errors.

4.1 Success and failure
Goal-directed evaluation starts by replacing boolean-
directed evaluation with a substantially more powerful
underlying semantics. Expressions in Godiva succeed in
producing results or fail and produce no results. Control
structures such as if (expr)... are directed by
whether or not expr produces a result, not by whether
that result is true or false. Expression failure propagates
from inner expressions to enclosing expressions.

4.2 Non-boolean logic
Relational operators such as x < y either succeed and
produce their right operand, or fail. In simple uses such as

if (x < y) statement

the meaning is consistent with Java. Since the expression
semantics are not encumbered with the need to propagate
boolean (or 0 or 1) values, comparison operators instead
propagate a useful value (their right hand argument),
allowing expressions such as 3 < x < 7 which is rather
more concise than Java�s (3 < x) && (x < 7).

4.3 Generators
Generators are expressions that can produce multiple
results. In a goal-directed language, generators are the
building blocks from which powerful algorithms are
constructed. Generators respond to expression failure by
producing additional results, which are delivered to
surrounding expressions by means of implicit control
backtracking.

The simplest generator is another post-boolean
operator, alternation. Alternation is a binary operator that
subsumes Java�s logical OR. The expression

expr1 \ expr2

produces any values from expr1 followed in sequence by
any value from expr2. For example, the expression
1\2\3 is capable of generating three values. The \
character was chosen as the alternation operator for the
sake of compatibility as it has no special meaning in Java.

4.4 Backtracking
Whether a generator produces one, some, or all of its
results is determined at run-time by whether the expression
it is used in requires additional results in order to succeed
in producing results. When an enclosing expression fails,
its generator sub-expressions are resumed for additional
results, and the failed outer expression is retried with those
results. When more than one generator is present in an
expression, they are resumed in a LIFO manner. The
expression

expr == (1 \ 2 \ 3)

succeeds if expr is any one of the three values. expr is
compared with the first result, a 1, and only if that
comparison (or an expression in the enclosing context)
fails is the alternation resumed to produce a 2 or a 3.

The same thing can be written in Java by
repeating the reference to expr and using three equality
tests, but if expr is a complex object reference (say,
a[3].left.right.o[2]), writing the above
comparison in Java is longer and less efficient:

In Godiva, the code is:

a[3].left.right.o[2] == (1 \ 2 \ 3)

In Java, it is:

a[3].left.right.o[2] == 1 ||
a[3].left.right.o[2] == 2 ||

a[3].left.right.o[2] == 3

4.5 Flaws in Icon�s Goal-Directed Evaluation
In Icon, it is fairly easy to write expressions that backtrack
unintentionally or in which it is unclear whether
backtracking will occur or not. For example, given an
arbitrary call to a procedure p(), it is impossible to know
whether p() can backtrack or not without examining p�s
source code looking for suspend expressions. If the name
p is bound to different procedures at different times, a
given call may be a generator some of the time and a
regular procedure call at other times. The language
includes a limitation operator to prevent unintended
backtracking, in recognition of this problem, but one must
still know when to use it.

Another problem in Icon is the infamous �every-
while� bug. In Icon, the control structure every expr1 do
expr2 is used to drive expr1 to produce every value. There
is also a while expr1 do expr2 control structure that is used
to repeatedly evaluate expr1. This reevaluates expr1 to
obtain its first value each time through the loop. The
problem is that novices very frequently fail to understand
the difference between these control structures and select
the wrong form of loop. The bug appears occasionally in
code written by proficient Icon users, by accident rather
than through ignorance.

5. GOAL-DIRECTION IN GODIVA
Godiva implements Icon-style goal-directed expressions
while avoiding the two errors identified above.
Unintentional backtracking is avoided by making all
generators evident from the syntax. Confusion over
iterators is avoided by specifying that all loops perform
iteration over generators when the control expression is a
generator, and conventional loop tests otherwise. Fixing
the first error enables the second error to be fixed
reasonably.

5.1 Syntactic Transparency
Previous experience with goal-directed evaluation suggests
that the combination of implicit control backtracking and
implicit generator expressions can result in unfortunate
accidents. Also, explicit generator syntax simplifies certain
code optimizations. In contrast, all expressions in Godiva
where goal-directed evaluation may lead to backtracking
are explicit and self-evident in the syntax. This leads to
more efficient translation opportunities, and avoids
programming errors from accidental goal-directed
evaluation.

 For these reasons, in Godiva generators are
explicitly identifiable from the syntax. Suppose there is a
generator nextImmediate that generates each of the
immediate family members. One wants to look for
members with blood type 0. Below is one way to find such
a member,
 if (fmember = @family.nextImmediate(),

 fmember.bloodType() == BloodType_O) {...

This if statement will succeed if there exist any immediate
family member with blood type O. Without the �@�, the
test is quite different. It will succeed if the very next
immediate family member has blood type O.

There are many times that the programm er wants
to call a generator to just get one value and knows that he
does not want to resume the generator. Without explicit
generators, one might code something like the following:
 fmember = family.nextImmediate(f)
 if (fmember != null &&

 fmember.bloodType() == BloodType_O) {...

This has the drawback of not only being more verbose, and
has significant inefficiencies. If the compiler does not
know that nextImmediate() cannot be resumed, it must
insert code to allow for that possibility. Explicit generator
invocation avoids this inefficiency.

The total number of generator operators in
Godiva is small. In addition to alternation, there are only
three other ways to introduce generators into an
expression. The to operator generates values from
sequences, such as 1 to 10. Regular expressions in
matching methods have generator semantics described in
the next section. Lastly, the generate operator, unary @, is
a polymorphic operator that generates values depending on
the type of its operand. @expr is defined as follows:

if expr is of type @expr result sequence is

integer 0 to expr-1

aggregate element of expr, in sequence

method generator invocation, described below

built-in data type the elements of the type

object generator invocation on standard

method, equivalent to @expr.gen()

For example, if a is an array of numbers, then the
expression

 x < @a < z

compares elements of a, succeeding if any of them are
between x and z. Recall that comparison operators
produce their right-hand operand when they succeed; this
expression produces z each time it succeeds. If the specific
elements of a in the specified range are desired by the
surrounding expression, a more devious expression such as

z > (x < @a)

is needed. Another possibility, is

x < t = @a < z, t

User-defined generators are the most general way
to introduce generators into an expression in Godiva. User-
defined generators are method calls that suspend results
instead of returning them. In Godiva, a method can be
invoked for at most one result using ordinary parenthesis
syntax or it can be invoked as a generator by means of the
@ operator.

 p() // ordinary invocation

 @p() // generator invocation

For example, in the following statement the then-
branch is executed if any result produced by a generator
invocation @o.gen() is equal to 1, 2, or 3.

 if (@o.gen() == (1 \ 2 \ 3)) ...

Since gen() is the standard generator method
name, @o could be used in place of @o.gen(); this would
not be the case if gen() required parameters.

The built-in data types all have a predefined
generator that produces each of their components. For a
string, @s produces each of the characters. For a list, @l
produces the elements starting from the left. For a set, @s,
produces the elements in no specific order. For an
associative table, @t produces the keys of the table in no
specific order.

Within methods, non-final results can be
produced using suspend expr instead of return. In
generator invocation, such a method can be resumed at the
point in the code where it suspended, with local variables
intact, to produce additional results for the enclosing
expression.

return can not be resumed; a return statement,
return expr, always terminates a method call and
produces a result whether in ordinary or generator
invocation. If a method is invoked using ordinary
invocation, it will never be resumed for additional results
even if it is a generator that suspended; in such invocations
suspend is equivalent to return.

Without data backtracking, an assignment�s
effects are irreversible. However, there is a reversible form
of assignment, <-. Reversible assignment appears in an
example later in the paper.

5.2 Iteration
Godiva’s loop control structures distinguish between
generator control expressions and single-result control
expressions. For a generator, the control expression is
evaluated only once and the loop body executes once per
result produced by the generator expression. For a single-
result control expression, the expression is re-evaluated
each time through the loop, as in conventional languages.

The good news about this is that it allows very
clean expression of loops based on generators, such as

 while (i = (1 \ 1 \ 2 \ 3 \ 5 \ 8))

which executes a loop body with i set to the first few
Fibonacci numbers (the example could be generalized to a
user-defined generator that produced the entire Fibonacci
sequence). The bad news is that a loop such as

 while (i < 5 \ j < 10) ...

has the counter-intuitive effect of executing the loop 0 or 1
or 2 times. Since Java also defines the non-generator
logical-OR operator ||, the above loop should be written

 while (i < 5 || j < 10) ...

5.3 Iterative Array Construction
In addition to iteration in the context of loop

control structures, Godiva adds one important unary
operator, iterative array construction, which constructs an
array of values directly from a generator’s result sequence.
This operator uses the curly braces, as do array initializers.
An expression such as

{ @i }

produces a list of size i with elements {0..i-1}, while

{ @a }

produces a list copy of a.

Below is an extended example of using Godiva
that shows an application of goal-directed evaluation. The
problem solved is the classic eight queens problem. The
task is to position eight queens on a chessboard so that no
queen can attack another.
import java.io.*

public class Queens {

 int up[16]

 int down[16]

 int row[9]

 public static void main(String args[]) {

 PrintResults(@Q(1),@Q(2),@Q(3),@Q(4),

 @Q(5),@Q(6),@Q(7),@Q(8))

 }

 public void PrintResults(

 int q1, int q2, int q3, int q4,

 int q5, int q6, int q7, int q8) {

 System.out.println(q1 + q2 + q3 + q4 +

 q5 + q6 + q7 + q8)

 }

 public int Q(int c) {

 suspend @place(1 to 8, c)

 }

 public int Place(int r, int c) {

 if (row[r] == 0 && down[r + c - 1] == 0,

 up[8 + r - c] == 0) {

 suspend row[r] <- down[r + c - 1]

 <- up[8 + r - c] <- r

 }

 }

}

When all the queens are successfully placed, the row
positions are written: 15863724.

5.4 Generators and Aggregate Operations
Generators allow data to be combined in interesting ways.
Consider the matrix multiplication problem. For matrices
A and B, each element of the matrix AB is a sum of terms
computed by multiplying a row of A and a column of B. In
Java, we can write this out with a triply-nested loop:
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++) {

 c[i][j] = 0.0;

 for (int k = 0; k < N; k++)

 c[i][j] += a[i][k] * b[k][j];

 // row i * column j

 }

In Godiva, the innermost loop can be replaced by
aggregate operations, but only if we can construct arrays
corresponding to columns of B. Column j of B can be
constructed by iterative array construction: { (@B)[j] }.
The matrix multiply looks like:
 for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 C[i][j] = + (A[i] * { (@B)[j] })

The example is intended to illustrate interactions
between generators and aggregate operations. In a naive
implementation of Godiva, it pays to reorder things and
construct the columns of B up front.
 for (int j = 0; j < N; j++)

 double temp[] = { @B[j] }

 for (int i = 0; i < N; i++)

 C[i][j] = + (A[i] * temp)

6. PATTERN MATCHING
Pattern matching facilities on strings are extremely useful.
For example, tools such as perl, grep, Tcl, awk, Emacs,

and Python owe much of their popularity and power to
extensive support for regular expressions (regex for short).
In light of regex popularity, Godiva supports two broad
flavors of pattern matching: text-directed and pattern-
directed. One matches a pattern against some target text.
Text-directed pattern matching is based on the
construction of automata much like lex(1). Once the
automaton is built, the characters in the target text are
used to drive the matching. Pattern-directed matching is
more goal-directed in nature and deserves a closer look.
Many of the ideas for goal-directed evaluation arose during
the implementation effort of SNOBOL�s pattern matching
facilities.

In pattern-directed matching, the order and
structure of the pattern is used to guide the matching
process. The patterns are defined as special methods with
the keyword pattern as a method modifier. Any class
that contains pattern methods implicitly subclasses
Match. Rather than simultaneously matching many
patterns, pattern-directed matching uses a single pattern
that may contain several parts. The matching proceeds by
trying to match parts of the regex on a component by
component basis. The syntax of matching methods is as
follows:

pattern MethodHeader {

 <ExtRegEx>

 else {ElseAction}

}

<ExtRegEx> :== {<RegEx> <action>}

<RegEx> :== <SimpleRegEx> |

 �(�<ExtReg>�)� [�+�|�*�]

A regex is composed of either a simple regex or an
extended regex surrounded by parentheses followed by
either a plus or a star. The general ideal is that code
fragments may be nested anywhere within an extended
regular expression as long as it is delimited by curly
braces.

The regexs and actions are executed left to right,
outer to inner. They are resumed in a LIFO manner, i.e.
stack discipline, should either an regex or action fail.

In a pattern, the operator | is used to specify
another alternative. So, given a|b, first we try to match
an a. If that fails, then upon backtracking we try to match
the b. Similarly, given a* we try to match the zero a�s,
if that produces a failed match later down the process, the
matching engine tries to match one a, then two, and so on.
The pattern a+, assumes that zero a�s fails, and behaves
just like a* otherwise.

Patterns are a special case of generators that
suspend on a match. If a regex fails, it propagates the
failure to the last suspended expression, which is resumed

if possible. When a pattern is resumed, the last position of
the last successful partial match is restored. The engine
then continues matching until it either succeeds with a
complete match or fails and executes the corresponding
code in the else-action.

Below is an extended example:
import godiva.pattern

class MyMatch extends Match {

 // matches a comma separated list of dates

 pattern void dlist(String s)

 {

 (date() {

 this.start = this.pos

 // prevents backtracking

 }

 WS()

 \,

 WS()

)+

 }

 // matches a date

 pattern void date(String s) {

 (january|february|march|april|may|

 june|july|august|september|october|

 november|december)

 WS()

 ([0-9]+) {

 system.out.writeln(substring[0]+�\t�+

 substring[1])

 }

 // matches white space

 pattern void WS(String s) {

 [\t\n]*

 }

 public static void main(String args[]) {

 MyMatch m = MyMatch()

 String s = " january 12, feburary 19, � +

 � march 22, december 25"

 m.dlist(s)

 }

}

The above program writes out the following:

january 12

feburary 19

march 22

december 25

By default, the patterns have the remainder of the
unmatched target string as a default argument when called
inside of a regex. If a pattern is called from an ordinary

expresion then the argument must be specified as in the
example with m.dlist(s).

For comparison here is the same program to parse
comma separated list of dates in perl,
#!/usr/local/bin/perl

 $_ = �january 12, feburary 19, � +

 � march 22, december 25";

 while (m{
 (january|febuary|march|april|may|
 june|july|august|september|october|
 november|december)
 \s+
 ([0-9]+)
 \,?
 \s*
 }ixg
)
 {
 print "$1\t$2\n";
 }
}

In perl, the actions cannot be arbitrarily intermixed with
the patterns. It is an ad hoc effect, that it is possible to
iterate over the matches with the while loop. The \s is a
built-in regex for matching white space. The Godiva
program has a similar structure but we do have to create
our own low level patterns where we do not have built-in
patterns.

By assigning to this.start, one can set the
left most possible position from which backtracking can
begin. Once we are satisfied with the current component
match, we can use this to prevent any other possible
matches on a portion of the target string left of start. The
keyword fail unmatches the currently matched string,
and starts backtracking. this.pos returns an integer
that is the current position within the matched string.
Because there is hidden backtracking, minimal matches
are also unique to pattern-directed matching. These
operators match the minimal amount of text in order to
succeed. Parentheses capture the portion of the target
string that the inclosed regex matches. The results are
store in an instance field called substring, which is an
array of strings. The parenthesis captures are number
from left to right by the opening parenthesis. The
following regex demonstrates minimal matching,
substring[i] captures, and the fail statement:
^.*?[0-9][0-9] {

 // matches the last two digits of a

 //line

 }

([0-9]+) {

 if (ToInteger(substring[1]) > 31)

 fail

 }

To summarize, patterns are composed of the
following atomic patterns and operators:

? matches 0 or 1 occurrences of preceding
pattern

| Alternation

* non-greedy star

+ non-greedy +

{min, max} non-greedy range

[�] matches any of the listed characters

a directly matches non-special character, can
be escaped with \a if a is a special
character

(�) used to group patterns, it also captures the
enclosing text that is match into the array
substring[]

The first five operators are generators. Non-greedy means
that the pattern matches the minimum number of
characters in order to satisfy a match. In an alternation
such as a|b, the matching proceeds by first trying to
match a. If that fails, the matching engine tries to match
b. The matching engine will only try to match more
characters if resumed after matching too few characters
causes by a failure later during the matching.

The following is a summary of the special data
members and expressions that are available within the
action part of a pattern:

this.substring[i] i-th matched substring, an r-value

this.start an l-value to set the left most position
for backtracking

this.pos returns the current position in target
text

fail ignores the current subpattern match
and starts backtracking

7. RELATED WORK
Godiva is closely related to Java and Icon, and also
borrows ideas from Perl, REXX[2], Python[12], and
APL[8]. Many of the practical ideas in Godiva come from
useful facilities found in the above languages. They are a
rich set of built-in data types with and powerful set of
operators

Goal-directed expression evaluation originated in
Icon and generalizes both the pattern-matching facilities in
SNOBOL4 as well as iterator mechanisms such as those
found in CLU[11]. An efficient model for the
implementation of goal-directed evaluation has recently
been developed that will facilitate the adoption of goal-
directed evaluation in new languages[17]. Numerous

other language implementation projects are now targeting
code generation for the Java VM, including other very
high-level languages that provide advantages over Java,
such as NetRexx. Many dialects of the Java language that
add features from C++ have been developed. For example,
a research group has added parameterized types to
Java[14].

Pizza is a Java dialect that incorporates features
from functional languages[15]. Pizza adds parametric
polymorphism, higher-order functions, and algebraic data
types to Java. These extensions are largely orthogonal to
those proposed in Godiva, and take Java in a very different
direction, increasing the language’s expressive power by
extending the type system with a strong theoretical
foundation. GJ is an extension of the Java programming
language that supports generic types[3].

The UTSA group initially implemented a
prototype of Godiva that targets the Icon virtual machine.
The Icon VM has support for goal-directed evaluation.
Our current efforts are targeting the Java VM. Jcon is a
new Java-based implementation of the Icon programming
language[18]. Jcon�s implementation demonstrates that
goal-directed evaluation can be efficiently implemented on
the Java VM. Godiva has the potential for greater
efficiency due to strong typing as well as the syntactic
transparency of generators.

8. CONCLUSIONS
Java’s design is elegant in comparison with most
languages, but it is a spartan elegance. Java’s lack of
higher-level features, aside from classes, makes a fine
philosophical stand, and if one ignores the mountain of
class libraries Java is fairly easy to learn, as was Pascal.
We contend that this spartan elegance is unnecessary, and
have attempted to prove so in a very high level language
dialect that retains Java’s main assets.

Godiva adds substantially to the expressive power
of Java by integrating some of the best ideas associated
with very-high level languages. Java’s strengths are
augmented in the areas of numeric and string processing,
as well as data structure and algorithm development.
Remarkably, this expressive power is achieved with very
few additions to Java’s syntax that might reduce readability
or decrease the language’s broad appeal.

Any proposal to extend a language must address
the issue of generality. Goal-directed programming is
perhaps the most general capability added to Java. Not
every feature proposed in Godiva is necessary for every
application, but one or several of the features will be
valuable in most programs of medium or large size. The
end result is a notation that substantially more attractive
for the development of technical applications.

Godiva�s designers have tried to heed the advice
of C. A. R. Hoare: The language designer should be

familiar with many alternative features designed by
others, and should have excellent judgement in choosing
the best and rejecting any that are mutually inconsistent�
One thing he should not do is to include untried ideas of
his own. His task is consolidate, not innovate[13]. Each
feature provided by Godiva has been tested in one or more
languages with a significant user base and has proven its
worth in real programs.

9. REFERENCES
[1] Church, Alonzo, �An Unsolvable Problem of

Elementary Number Theory,� American Journal of
Mathematics, 58:345-363, 1936.

[2] Cowlishaw, M. F., The NetREXX Language. Prentice-
Hall, 1997.

[3] GJ - A Generic Java Language Extension,
http://www.cs.bell-labs.com/who/wadler/pizza/gj/

[4] Griswold, Ralph E. and Madge T. Griswold, The Icon
Programming Language, 3rd Edition, Peer-to-Peer
Communications, 1997.

[5] Griswold, R. E., J. F. Poage, and I. P. Polonsky, The
SNOBOL4 Programming Language, 2nd Edition,
Prentice-Hall, 1971.

[6] Gudeman, David A., � Denotational Semantics of a
Goal-Directed Language�, ACM Transactions on
Programming Languages and Systems, Vol 14, pp
107-125. Jan. 1, 1992.

[7] Hansel, Duane and Bruce Littlefield, Master
MATLAB: a Comprehensive Tutorial and Reference ,
Simon & Schuster, 1996.

[8] Iverson, Kenneth E., A Programming Language. John
Wiley and Sons, 1962.

[9] Jeffery, Clinton L., Closure-Based Inheritance and
Inheritance Cycles in Idol , Technical Report: 98-3,
UTSA, Division of Computer Science, July 23, 1998.

[10] Jeffery, Clinton L. and Ray Pereda, Godiva: a Very-
High Level Dialect of Java , Technical Report: 98-4,
UTSA, Division of Computer Science, July 23, 1998.

[11] Liskov, B. H., A. Snyder, R. Atkinson, and C.
Schaffert, "Abstraction Mechanisms in CLU,"
Communications of the ACM, Vol. 20, No. 8, August,
pp. 564 - 576, 1977.

[12] Lutz, Mark. Programming Python, O�Reilly and
Associates, Inc., 1996.

[13] Modula-3: Language definition (multi-page),
http://www.research.digital.com/SRC/m3defn/html/in
dex.html

[14] Myers, Andrew C., Joseph A. Bank, Barbara Liskov:
Parameterized Types for Java, pp. 132-145, POPL
1997.

[15] Odersky, Martin and Philip Walder, �Translating
theory into practice,� 24th ACM Symposium on the
Principles of Programming Languages, Paris, France.
January 1997.

[16] Ousterhout, John, Tcl and the Tk Tookit, Addison-
Wesley, 1994.

[17] Proebsting, Todd. �Simple Translation of Goal-
Directed Evaluation,� Proceedings of the SIGPLAN
97 Conference on Programming Language Design
and Implementation. Las Vegas, NV. pp. 1-6, June
1997.

[18] Proebsting, Todd and Gregg Townsend,
Jcon: A Java-Based Icon Implementation,
http://www.cs.arizona.edu/icon/jcon/

[19] Sterling, L, and Shapiro, E. The Art of Prolog. MIT
Press, Cambridge, Mass., 1986.

[20] Wall, Larry and Randal L. Schwartz, Programming
Perl, O�Reilly and Associates, 1991.

[21] Whorf, Benjamin Lee, Language Thought & Reality,
MIP Press, Cambrige, Mass., 1956.

