
CSE423: Compiler Writing, Spring 2022 
Dr. Clinton Jeffery 

 
Course Learning Outcomes (CLOs) 
At the end of this course, a student should be able to: 
1. Understand the theory behind compiler algorithms and be able to apply them in the 

context of solving compilation problems. 
2. Understand each stage of compilation and be able to apply the appropriate 

transformations both manually and in code. 
3. Apply the theory of compiler design and software engineering principles to build a 

working compiler. 
 
Assessment Methodology: 
* Each CLO was tied to a measurable metric, either a question on the final, a student 

survey, or part of the main project assignment. These measurements did not overlap. 
* A formula was used to compute a normalized weighted sum from the scores for those 

questions and assessments. Raw scores were used in cases of direct questions. 
* The results were averaged over the entire class to compute a numeric score per 

outcome. 
* Only undergraduate (CS major) student data was used for this analysis. 
 
The formulas used were: 
 

CLO Metric 

1 Midterm exam problem #5 on a scale of 0-40 

2 Final exam problems #7 and #12 on a (combined) scale of 0-50 

3 Project grade on a scale of 0-110 

 

 
For CLO 1, Midterm problem #5 was used. This problem required the students to 
analyze a context free grammar, identify its component parts, and explain differences 
between two different forms recursive grammar rules. 
 
For CLO 2, Final problem #7 and #12 were used. These problems required the students 
to demonstrate understanding of issues in the area of symbol tables and intermediate 
code generation, respectively. 
 
CLO3 was based on six scored phases/deliverables for the main project that was a 
large software engineering undertaking bringing to bear all of the theory presented in 
the course. 
 
 
 
 
 
 
 



Performance Metric 
 
This course, especially its programming project, is more difficult than most in the CS 
curriculum. The metric used to analyze outcomes for the course is: 
 

Class Average Performance Threshold 

< 50% Unsatisfactory 

50% to <60% Marginal 

60% to <90% Satisfactory 

90% to 100% Excellent 

 
 

Results 
 
Course Learning Outcomes 

CLO Class Average Performance 

1 32.77/40 = 82% Satisfactory 

2 38/50 = 76% Satisfactory 

3 61/110 = 55% Marginal 

 

Course Learning Outcomes 1-2 were satisfactory. Course Learning Outcome 3 was 
marginal. 
 
 

Computation of Student Outcomes (SOs): 
This course affects SOs 1, 2, and 6 (outcomes defined at the program level). We 
deal with each in turn by substituting a numeric value for performance (1,2,3, and 4 for 
unsatisfactory, marginal, satisfactory, and excellent respectively) and computing the 
average. 
 
SO #1: Analyze a complex computing problem and apply principles of computing and 
other relevant disciplines to identify solutions. This outcome involves CLO 1. 
 

CLO # Performance Overall 

1 82% Satisfactory 

 

SO #2: Design, implement, and evaluate a computing-based solution to meet a given 
set of computing requirements in the contest of the program’s discipline. This 
outcome involves CLO 3. 
 

CLO # Performance Overall 

3 55% Marginal 

 

 
SO #6: Apply computer science theory and software development fundamentals to 
produce computing-based solutions. This outcome involves CLO 2. 
 

CLO # Performance Overall 

2 76% Satisfactory 

 



 
Resulting Student Outcomes 
 
 

SO Title in Brief CLO Score Interpretation 

1 Analyze 1 3 Satisfactory 

2 Design, implement, evaluate 3 2 Marginal 

6 Apply theory 2 3 Satisfactory 

 
 
Remedial Actions 
 

Failure to Write a (toy) Compiler: In comparing project grades in Spring 2022 with the 

previous year, it is apparent that many students were unable to deliver working code in 

the later phases: semantic analysis and code generation. There was a strong 

bifurcation, with 22 students successfully delivering most of these latter phases, and 14 

students receiving few or no points on these assignments. The course final grades were 

similar, with a high number (11/36) of students receiving a D or an F. 

The reasons many students failed on their coding may be partly due to the instructor, 

the difficulty of the language that students were asked to write a compiler for (a Java 

subset), or the students being less prepared for a large-scale coding effort than in 

previous years. For example, in 2021 CSE 325 Operating Systems, which was 

supposed to deliver a medium-scale programming group project experience in 

preparation for CSE 423, reduced or eliminated group work and omitted the culminating 

final (filesystem) project due to covid. 

Remediation via a Revised Group Compiler Project: In 2021 the CSE 423 project 

was individual, partly due to covid and also in order to preclude the likelihood of one 

student doing all the work on behalf of others on the team who do not contribute or learn 

the material as intended. In Spring 2022 I made groups optional, feeling like the number 

of students affected by covid or otherwise attending remotely would still impair their 

ability to do full group team projects. In Spring 2023 I will change the semester project 

to make it more appropriate for a group project and proceed with a software-

engineering-style team orientation for most assignments. I will also change the 

language for which students are asked to write a compiler and provide more hands-on 

assistance during the scheduled lab hour and in required team meetings. Hopefully the 

group software-engineering style will improve students’ ability to get their compiler 

working successfully. 


