Technical Report: Preliminary Development of Computational
Sensitivity Analysis
Lorie M. Liebrockf and Radha Krishna Reddy Mudhiganti
tliebrock@cs.nmt.edu
Computer Science Department
New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801

Keywords: Sensitivity Analysis, Mathematical and Computational Sensitivity Analysis,
Sensitivity Analysis Tools

Abstract

This paper presents the use of sensitivity analysis in computer science, aiming to improve
the stability in real-time computer applications (Power Grid, Nuclear Reactors or any
control systems). Concepts of sensitivity analysis are used to study the uncertainty in
computer programs due to small perturbations of the parameters. The ideas of
mathematical and computational methods of sensitivity analysis are discussed in detail.
Some of the advantages and disadvantages of both these methods are addressed. A user-
friendly GUI tool is developed to compute sensitivities of application codes using
VB.NET, C, and Visual Basic Applications for Excel macros. The tool was developed
based on the computational method of sensitivity analysis. Details of how this tool works,
the components of the tool, and the limitations of the tool are also addressed in the later
sections of the paper. Sensitivities of some computational problems were computed to
validate the tool. Finally, the sensitivities of a dynamic power grid system were computed
using the tool.

1. Introduction

Several models have been developed from time to time to perform simulation and/or
control tasks. These models can either be mathematical or computational depending on
their purpose. The models are used to gain some insight into possible outcomes, which
are later used in developing real time applications (Power Grid Systems, Nuclear
Reactors, etc). However, before these models are used in the real world, there is a need to
study their sensitivity and stability.

There are some real time applications, which are controlled a computer programs and
there is a need to study how far these programs are stable, efficient and accurate before
they are used. We can use sensitivity analyses to study these issues.

This paper addresses the use of sensitivity analysis to investigate the stability in computer
programs, which are used to control real time systems. Stability here refers to the
behavior of the program. This behavior could be explained as follows:

If there is a small change in the input, then there are two possible outcomes:
1) there is a relatively small change in the output, which is acceptable; or
2) there is a drastic change in the output, which in turn can lead to two results:

a. this change is acceptable (this could correctly model reality), or

New Mexico Tech

b. this change is unacceptable; it does not correctly model reality and
this indicates that there is something wrong in the computation.

Sensitivity analysis is used to examine the behavior of the program. Even if there is a
drastic change in the output for a small change in the input, because of the behavior of the
system itself, this huge change in the output may correctly model the behavior of the
system. Hence, there is a need to study the application to check this behavior. On the
other hand, if the behavior of the application corresponds to 2b (as described above), then
the program is unstable and the code needs to be revised until the study shows us that it is
stable. In the other cases, the code is considered to be stable for the tested input.

Given a model, a mathematical sensitivity analysis study can be done to decide whether
the mathematical model is stable or not. For computational procedure, the behavior of the
program must be determined and some computations must be performed to decide
whether the program is stable or not.

Once the sensitivity analysis is done, we can use the results for various purposes, such as
for ranking the inputs and parameters in order of their relative sensitivity in the output,
for assessing changes in the output due to parameter and input variations, improving the
quality of the computations, or for limiting the use of the program to regions where it is
stable.

In the following sections, sensitivity analysis is introduced, three types of sensitivity
analysis are discussed, a graphical computational sensitivity analysis tool is presented,
validation of the computational sensitivity analysis tool is shown using sample problems,
and finally the tool is used to perform the analysis of a dynamic power grid system.

2. Sensitivity Analysis

Sensitivity analysis is an important component in building mathematical, computational,
and simulation models. The values of model parameters, the computations, and the input
values of variables are prone to many sources of uncertainty. It is necessary to understand
the sensitivity of the model outputs to the perturbation in the model inputs [1]. Thus
mathematical and computational concepts of sensitivity analysis can be used in the
growing field of numerical simulation to study models [2].

Sensitivity analysis experiments may be performed on mathematical and computational
models to determine the sensitivity of model outputs to the uncertainty of input variables,
computations, and parameter values [1]. By conducting these experiments, we get to
know which parameters or input values have the greatest effect on the model outputs.

By performing sensitivity analysis on an application we gain insight into its stability. If
the results from the analysis determine that the application is not stable, then there is a
need to revise the design of the algorithm and computations involved. There may also be
a need to modify the underlying mathematical model, as it may be at fault.

There are different methods of sensitivity analysis, but since none of them is a clear
choice for all applications, it is necessary for us to understand each method before
applying them to any model. When choosing a method for sensitivity analysis, our main
concern is gaining insight into the behavior of the model or computational procedure.

Two methods of sensitivity analysis are briefly described in the following sub-sections.

New Mexico Tech

2.1 Mathematical Sensitivity Analysis

One approach to mathematical sensitivity analysis is to compute partial derivatives of one
or more outputs (dependent variables) with respect to one or more inputs (independent
variable) in a model. This of course assumes that the partial derivatives exist in some
sense. Mathematical models are often expressed as systems of equations, which relate the
dependent variables to the independent variables. Hence, mathematical stability analysis
can be described as: “Given an equation, the variability of the output (dependent variable)
with respect to perturbations in the input (independent or free variable) is measured".
Sensitivities for a computer application can be viewed as the partial derivatives of outputs
with respect to inputs.

Most computer programs are developed based on some mathematical equations, which
can be called the governing equations. These equations relate the outputs to the inputs.
Sensitivities of the computer application can be estimated by computing partial
derivatives of the governing equations in that application with respect to the inputs. Note
that this really is an analysis of the model, not an analysis of the computer program.

Let us consider a mathematical model determined by the following equation to
understand the basic idea of mathematical sensitivity analysis:

Yy =F(x,t)

Where y represents the dependent variable and x represents an independent variable, ¢
stands for time and F is the governing equation relating y to x on which the application
was developed. We can now compute the sensitivity of x to y by calculating the partial
derivative of the governing equation with respect to x during each time step [7, 8]:

9 _OF(x,1)
Ox Ox
The differential of y isdy :g—yAx. So, o :(;—FAx, where Z—F is the amplification
X X X

factor, i.e., if there is a change, Ax, in X, then the change in y, i.e.,dy, will be Ax times
the amplification factor.

Here are two examples showing how to obtain the amplification factor.
Example 1: For y = G(x) = 0.4*x + c, the derivative of G with respect to x is:

G _dG_,
Ox dx

which results in an amplification factor of 0.4.

Example 2: For y = G(x) = 2x + ¢, the derivative of G with respect to X is:

which results in an amplification factor of 2.

Let’s now consider a better example that would illustrate the detailed concepts of
mathematical sensitivity analysis:

New Mexico Tech

The fund growth model is expressed by equation (1).
fn+1=fn+qn+p7 (1)

where f(is the initial fund value, p =r/12, and r is the annual percentage rate. By
replacing 1+ o with R, where R > 1, we get:

fro =R+ p= =R S+ p L @)
We derive equation 2 by the following steps:
Jun =RE, +p
for alln=0 and
o =R P

for all n=>1. Therefore,
S SR(Rf, +p)+p=Rf,, + p(1+R)
for all n=1. Continuing in this manner leads to
fu =R f,+p(l+R+R*+..+R%).
Then sum the geometric series to get (since R>1).

R" -1
R-1"

L =R fo+p

Next consider the perturbed equationf ., +J,, =R(f, +J,)+ p. Subtracting the
unperturbed equation (2) from the perturbed equation results in the perturbation
propagation equation: ¢f,,, = R, = &, =R" f,. This model is not absolutely stable

because of the exponential form of growth. However, note that we do have relative
stability because

Jn: R”éfo - JO
/ n R" -1 p p
n R + + —
Sy P R T R Ry
ASI’Z—»OO,
if” - —éfo and ‘ifo % <B:°%.
P V4
n + 0 + 0
Jot R Ty R—l‘

assuming f,>0, R>1, and p>0, this shows that the fund growth model is relatively stable.

New Mexico Tech

2.1.1 Limitations of Mathematical Analysis

There are computer applications for which we don’t have a simple system of governing
equations relating the dependent variables directly to the independent variables. Agent
based computation often falls into this category. Variables may be related indirectly and
in a very complicated fashion. Further, many computer applications do not have simple
mathematical equations. Instead they are based on logical relations and inequalities (e.g.,
control flow statements). Mathematical sensitivity analysis involving the partial
derivatives of the equations with respect to the independent variables may not be suitable
for use where the dependent variables are not explicitly related to the independent
variables in a simple way.

Most computer applications are developed on a step-by-step basis, where the
designer/programmer keeps modifying the algorithm (the computational procedures) until
the desired output is obtained. During the course of modification, he (or she) may end up
with a complicated program. Applying mathematical analysis to such applications may be
expensive and time-consuming and very complex. Further, the computational scientist
may not be able to write down the set of governing equations by the time development is
complete.

2.2 Automatic Differentiation

To compute sensitivities for a given computer application there are many automated
differentiation tools available. These tools take the code of the application as input and
produce the derivative of the application; on executing the derivative version of the code
we can get the sensitivities of the application. There are some drawbacks associated with
those tools. In particular, automatic differentiation tools such as ADIC and ADIFOR can
not differentiate agent based computations. In those applications, individual agent
behaviors are separately coded and often influence each other only indirectly.

2.3 Computational Sensitivity Analysis

We have already seen that mathematical sensitivity analysis cannot be easily applied
directly for some computer applications. These limitations of mathematical sensitivity
analysis lead us to another method of sensitivity analysis called computational sensitivity
analysis. In this method, the sensitivities are calculated using numerical procedures based
on computational approximations, most of which use concepts from the area of finite
difference methods. Sensitivities are calculated at one or more points in the parameter
space. A small perturbation of the inputs, such as a change of plus or minus one percent,
can be used to assess the corresponding change in the model output [7].

Consider the computer application that models the equation given below to understand
the idea of computational sensitivity analysis:

y=F(x,1)
A finite difference equation to model the above equation is:

o _ Ay _ F(x+Avn) - F(x,1)
Oox Ax Nx '

New Mexico Tech

The change in input value (Ax) is to be very small. The procedure to compute the
sensitivities requires the program to be executed for each input value, i.e., for x and x +
Ax. By taking the difference between the base case and a perturbed output, then dividing
the result by the change in input, Ax, we get an approximate sensitivity of the application
with respect to the input x [7].

Hence, there are three steps in computational sensitivity analysis:

1) Base case: In this case, run the code with the original fixed inputs and
record the corresponding outputs.

2) Comparison case: Next, vary selected input parameters one (or more) at a
time, rerun the code with the changes, and record the corresponding
changes in the outputs calculated by the code.

3) Compute sensitivity: Compute the approximate amplification factor or
sensitivity, as discussed next.

Let’s consider the same example of the fund growth model to get the idea of how to do
computational sensitivity analysis.

The following equation shows fund growth evolution:

S =L 0L . 3)
The computational evolution equation can be expressed as:
Jun =10 +hG,, whereG, =G, (f,,p)=(g, + p)/h. “4)
The perturbed propagation equation is therefore:
Fon =9, +hG,.)
Using the chain rule
%, = e g, + Sy ©

and combining equations (5) and (6) leads to

G
+1=n h .
M

oG

9, +—" 0??] (7)
P

Next apply the least mean square fit method to fit an equation to the output of the code

and compute the coefficients of a linear mathematical model. This reduces equation (7) to

the following following:

d;lﬂ = Jn +h(Cfé(‘n +Cp@)’ Where Cf = ?pﬂ andCF = 2” : (8)

We can simplify equation (8) to:

&, =(1+nC,)y, +hC,

New Mexico Tech

Where R =(1+hC,)& p=hC,p and

d‘n+l = EJ}'[+ﬁ . (9)
Note that equation (9) is similar to the fund grow equation (2).

Thus, by solving the above linear equations we compute the corresponding coefficients
Crand C,. These computed values are computational amplification factors that indicate
the growth or decay of the model. Finally, the model inputs responsible for the largest
changes in the outputs are then classified to be the most sensitive and hence the most
important to study.

2.3.1 Limitations of Computational Analysis

To perform the computational sensitivity analysis, efficient computational models are
needed, which take the outputs recorded during each run to analyze the application.
Developing and implementing such computational models may require substantial time
and effort. Thus, the costs associated with sensitivity analysis may sometimes be high [3].

The number of model runs can sometimes be very large, i.e., of the order of many
thousands, resulting in substantial computational demands. For complex models the large
amount of computing time needed by such runs restricts the scope of this sensitivity
analysis procedure. In practice, this means, that the analyzer can investigate only the
parameters that he considers to be of greatest importance in specific input ranges.

Computational sensitivity analysis does not guarantee stability for all the values of the
inputs. It provides a measure of stability around the values used as inputs for the test
experiments of the application. Therefore the range of values tested should include the
range of applicability of the application and no conclusions can be made regarding global
sensitivity [7].

There are many automatic differentiation tools available in the market, which can be used
to compute the sensitivities of an application. Some of them are efficient, can be used to
calculate accurate sensitivities and some are easy to work with. However, available
automated differentiation tools cannot be used for all kinds of applications. For example,
if an application does not have an explicit relationship between the inputs and outputs or
if the computations in an application are based on just simple control flow statements.
Further, some of the tools can only be used for applications developed using few
programming languages like C/C++ [14, 15] or FORTRAN [16].

3. Computational Sensitivity Analyzer

In this section, we discuss a user-friendly GUI tool (see Figure 1), which can be used to
compute sensitivities of a given application. Considering the limitations of mathematical
sensitivity analysis and automatic differentiation, a more user-friendly computational
sensitivity analyzer tool was developed, which can be used over a wide range of
applications. The details of the tool are discussed below.

New Mexico Tech

Components of the Analyzer tool

This tool to compute the sensitivities of the given application uses the computational
method of sensitivity analysis discussed above. The different components of the tool are
listed below and the functionality of each component is explained in the following
sections. The main components of the tool are:

1. Tool Setup

2 Input Processing Stage

3. Application Execution Stage

4 Sensitivity Analysis Stage

= SensitivityAnalyzer

Input Processing Stage
InputProcessing

Running &pplication Stage

Rundpplication

Figure 1: Snapshot of the sensitivity analyzer tool

3.1 Tool Setup

To make use of the tool in an efficient manner, it is recommended that all the files stored
in the same folder. The executable for the tool, the executable for the sensitivity analysis,
and the executable of the application (for which we want to find the sensitivities) must all
are stored in a same folder. The original input file for the given application must be
stored in the “bin” folder of the tool. Before starting to use the tool it’s necessary to
record the macro into the input file; the code for the macro is provided with the tool. Any
output generated using the tool is stored in the “bin” folder of the tool. The tool is
developed mostly using Visual Basic.NET. The code to compute sensitivities is written
using C language.

There are two main functions of the macro which must be included with the Excel file,
CreateBooks() and Worksheet SelectionChange(), the code for these functions is
provided with the tool.

The following procedure shows how to save a macro with a given Excel file:

Once the Excel file containing original inputs is open we need to activate the “Visual
Basic Editor” window to save the macro with the file. We can open the “Visual Basic
Editor” window pressing “Alt+F1” or by going to the menu bar and then selecting

New Mexico Tech

“Tools/Macro” then click “Visual Basic Editor” (see Figure 2), on doing so a new
window named Microsoft Visual Basic is opened. The next step is to insert a module in
the same window. This can be done by going to the Menu Bar on the “Microsoft Visual
Basic” window and select “Insert” from the dropdown menu and click “Module” (see
Figure 3). Now a small window called “Project-VBA Project” is displayed. Select
Modules, then double-click Modulel and add the code for the CreateBooks() function
provided with the tool into that module. Next, copy the code for the
Worksheet SelectionChange() (see Figure 4) function provided into each sheet of the
workbook containing input data. Selecting sheets from the “Microsoft Excel Objects™ list
in the “Project-VBA Project” window can be used to do this.

U8 SensitivityAnalyzer [- 5] |

Sensitivity Analysis Stage

fle Edt Wew Insert Format | Tools | Data wi

DEE - e 2 s Hacra & AlE+FE
A9 - A 20 -

- S 6] T T AlEHFLL

72'7 23 licrosoft Script Editor Alt+Shift+F11

N 3 £

747

5 |

5|

7 | 15

]

9 g |

B

(1]

12 |

13

474 b mhSheetl / Sheet2 {Shest3.
Read:

Figure 2: Opening the Visual Basic Editor

New Mexico Tech

{8 sensitivityAnatyzer

Ble Edit Yiew
==
AL

Insert

i @
hd A 2

Input Processing Stage

& Microsoft Yisual Basic - input.xis - [Module1 (Code)]

% Fie Edt Wew Insert Fomot Debug Bun Tools Adddns Window Help

VBAProject (inpuk.xls)

=3 Microsoft Excel Objects Sub CreateBooks ()

Shestl (Shest1) Dim MyPath AS String

Shest (Shest2) Dim whName AS String

Sheet3 (Sheet?) Diwm copyhrray As Variant
487 Thisworkbook Dim copyhrrayl As Variant

=15 Modules Dim copyhrrayz As Variant

A B

2
3

(IR RN

20

Read

<& Modulel Dim copyhddress As String 'Ls Range

Format Tool
wole arial ‘whName = InputBox ("Enter filensme prefix”, "Create 3 books")
< wbllame = ThisWorkbook.Name
a If whMame = " " Then Exit Sub
c g

HyPath = "C:iSensitivinyyr

WL ay = krray("_D.xls", "_C.xls", "_K.xls")
odule fikodue I copyAddress = "A1:Zs007 - -

i« "« » whsheetl {sheetz /sheeta /.

alphabetic | Categorized |

W copylrray = ThisWorkbook.Worksheets("Sheeti”) .Range copyliddress)
copylrrayi ThisWorkbook.Warksheets ("SheetZ") . Range [copyhddress)

copylrrayz ThisWorkbook.Warksheets ("Sheet3") . Range [copyhddress)

For i = 0 To 2

With Workbooks. Add

.Worksheets(1) .Range (copyAddress) = copyArray
.Uorksheets(2) .Range (copyAddress) = copyArravl
.Uorksheets(3) .Range (copyhddress) = copyArraya
VbMeweirray(i) = whlsme & WoNamelrrayii)

.Savelds Filensme:=NyPath & WoNamelrray (i)
End With

Next i

ThisWorkbook. Aetivate
End Suk

B

y onom b SEY @) tn1,colt .
[(Generan | |westarations) =]
hd Public UbMNeaweirray ks Variant =

VBAProject (input.xds)
£ Microsoft Excel Objects
Sheet1 (Sheet1)
sSheet? (Sheet)
heet3 (sheet3)

e Thisworkbook
=125 Modules

¥ Module1

Sheet1 Worksheet -

Alphabetic | categorized |

[rane) ___ ECTRE

DisplayPageBreak False
DisplayRightToLef False

iter False
EnzbleCalculation True
EnzbleOutining False
EnzblePivotTable False
EnableSelection 0 - NoRestrict

Name sheetl
ScrollArea

StandardWidth | 8.43

Visible -1 -xlshestyisib

Figure 3: Macro for CreateBooks() function

|worksheet

L;]Se\ectlon‘cnange _v_]

[Private Sub Worksheet_SelectionChange (3yVal Target As Excel.Range)

If Intersect(Target, Range("A1:Z500")) Is Nothing Or _
Target.Count > 1 Or _
Not IsNumeric(Target) Or
IsEmpty(Target) Then Exi
*Or _ Target.Font

tn Error GoTeo done

Workbooks (WbNameArray(0)) .Worksheets ("Sheetl™). _
Range (Target.Address) .Value = Target * 1.1

Workbooks (WoNameArray (1)) .Worksheets ("Sheetl™). _
Range (Target.Address) .Value = Target * 1.01

Workbooks (WbNamelrray(2)) .Worksheets ("Sheet1®) . _
Range (Target.Address) .Value = Target * 1.001

'Target.Font.ColorIndex = 3 'red

done:

If Err.Number <> 0 Then MsgBox "Error™
End Sub

= 4

Figure 4: Macro for Worksheet SelectionChange() function

3.2 Input Processing Stage

10

The initial process of creating three different sets of inputs from the given original input

file is done during the input processing stage of the tool. The user can browse for the
original input file just by clicking a button called “BrowseExcel” (see Figures 5 and 6).
To ease the process of altering the give input, the tool requires the inputs for the

New Mexico Tech

11

application to be read from an Excel spreadsheet. The computational method of
sensitivity analysis states that the inputs must be altered by a very small value. To do so,
a macro for the Excel spreadsheet is available to modify the original inputs (see Figures 3
and 4). The original input file is opened using the “InputProcessing” button (see Figure
7), then to activate the macro attached to it, the user must run the macro which can be
done by pressing “Alt+F8” on the keyboard (see Figure 8). The macro when activated
creates three new input files from the original input file. Now, upon clicking a cell in the
original input sheet, the value in that cell is altered in three different ways:

1. increase the value in cell by 0.1%
2. increase the value in cell by 1%
3. increase the value in cell by 10%

The computed new values are stored into three different files created earlier by the macro
for each variation in the input, the values in the cells, which have not been clicked are
just copied into all the new Excel spreadsheets. So finally there are three different files to
use as input for the application, in addition to the original input file. Next run the
application with one input file at a time and save the results from each run of the
application into a new text file. These files will be later used to compute the sensitivities
of the application.

(8 SensitivityAnalyzer |;I |§”X|

Sengitivity Analpsiz Stage

Look in: |&) Sensitivity Ll . =5 -
Shella

e input
My Recent |@input_c
Documents @input b

@ @input_}(

Desktop

Input Processing Stage

Open

Running Application Stage

Iy Documents

My Computer

FQ
o My Mebwark File name: input hd Open I
Furdpplication Blaces i J
Files of type: Iexce\ files [* x5 ;I Cancel
|

Figure 5: Opening input Excel file

New Mexico Tech

| Sensitivitynalyzer

Input Processing Stage
InputProcessing

RunS engitivity

SensitivityAnalyzer

Input Processing Stage
InputProcessing

Ed Microsoft Excel - input

E) Ale Edt View Insert Format Tools Data Window Help

O=E| < - |83 2 10 - |m r u
AD A A 20

4 4 » M} sheetl sheetz {sheets / |l

Ready

Figure 7: Selected input Excel file

New Mexico Tech

12

13

(8 SensitivityAnalyzer A= |

Input Fracessing Stage
InpuProcessing

Sensitivity &nalysiz Stage

E3 Microsoft Excel - input

Fle Edt View Insert Format | Tooks | Data Window Help

NEE ©- @@ 2 sl Moo e[y s AtFs || g ooz 2 - H-A- 7
A9 - # 20 : @ Record Hew Macro. .

; AT B [€ [0 T 19 vosolBosic Edtor e U KT

N 5 @0 Microsoft Script Edtor AltHShft+F1L

:3: 3 [¥

747

5

5

7 15

8

g 201

10

11

12

13

14

15

16

7

18

19

20

21

2

3

44 b nN\Sheet1 { Sheetd [Sheet3 / L« [

Read:

Figure 8: Running the recorded macros

3.3 Running Application Stage

This component of the tool is where the application is executed taking one input file at a
time. We have four different input files created by the previous component, i.c.,
“InputProcessing”. To run the application the user first generates the executable and
stores it on the system. The user clicks the “BrowseExecutable” button to search for the
executable. Once it is selected, the path is displayed in a text box below the button. If the
executable takes arguments, then the user can enter them in the text box labeled “Enter
Arguments”. Clicking the “RunApplication” button begins execution of the application
(see Figure 9). This procedure mentioned is followed to run the application with each
input file. After each run, the results must be saved into text files, which are later used to
compute the sensitivities of the application. For further processing, the resulting output
files must be saved in the “bin” folder of the tool.

New Mexico Tech

14

{1 se nsitivityAnalyzer, |:| ‘§| ‘Z|

Input Processing Stage Sengitivity Analysis Stage
InputPracessing

Running Application Stage

RunSensitivity

C:\Sengitivity\mult exe original. st

Rundpplication

Figure 9: Snapshot showing how to run a given application

3.4 Sensitivity Analysis Stage

This is the part of the tool where the actual sensitivities are computed using the outputs
generated during the various runs of the application. To compute the sensitivities, the
executable of the sensitivity analysis code takes three arguments. The arguments are as
follows:

1. The output file containing the results obtained when the application was
executed with the original inputs.

2. The output file containing the results obtained when the application was
executed with the altered inputs.

3. The name of the text file where the final sensitivities of the application are to
be stored.

The user can select the executable for the sensitivity analysis code by using the
“BrowseSensitivity EXE” button. The name of the files to be passed on to the
executable as arguments must be entered into the text boxes with appropriate labels (see
Figure 10). Now, by clicking on the “RunSensitivity”” button the program to compute the
sensitivities of the application is executed and the results are stored in the “bin” folder of
the tool. By repeating the process for each perturbed input file, the user can compute the
corresponding sensitivities.

New Mexico Tech

15

{8 SensitivityAnalyzen |._HEH§|
Input Processing Stage Sengitivity Analysis Stage
InputPracessing

C:\Sengitivity\sensitivity. exe original. st

Running Application Stage

perturbed it results ket

RunSensitivity

Runépplication

Figure 10: Snapshot showing the sensitivity analysis stage

3.5 Limitations of the Tool

In this section we list some of the limitations of the Sensitivity Analyzer tool described
above.

» As discussed in the preceding section, the tool is currently developed to process
the input files, which are in Excel format. In the future, it should be extended to
process more standard formats (e.g. text, data files).

« The tool computes sensitivities of a given application based on the concepts of
computational sensitivity analysis. Different methods of computing sensitivities
could be added to the tool and chosen with the browse button from the available
list of executables to compute sensitivities. One such extension would involve
developing other fits besides the least mean square fit.

» Finally, the limitations mentioned for the computational method of sensitivity
analysis are also true for the tool.
4. Sensitivity Analysis of Computational Problems

In this section, sensitivity results for two different computational problems are shown as
computed using the tool. The two applications are the fund growth model (to illustrate the
comparison to mathematical stability analysis) and the Power System.

4.1 Fund Growth

In this section we provide the sensitivities for the fund growth model computed using the
tool. The following equation shows fund growth evolution equation:

S =L t0, tp

New Mexico Tech

16

Base Case: Run the fund growth model with original inputs /= 1000, o= 0.005, p = 100.

Comparison case 1: Run the model by changing “/” by 1% to use inputs /= 1010, p=
0.005, p =100, dfp=10. This results in C,=0.005 and C,= 0.0 (see Equation 8).

Comparison case 2: Run the model by changing “p”" by 1% to use inputs /= 1000, p=
0.005, p =101, and dp= 1. This results in C,=0.005 and C,= 1.0.

Comparison case 3: Run the model just by changing both “/” and “p” by 1% to use
inputs /= 1010, p=0.005, p = 101, and Jfy= 10, dp= 1. This results in C,= 0.005 and

C,=1.0.

Each of these results is in agreement with the mathematical analysis of the growth fund
model.

4.2 Power System

This system is a mathematical model developed to model the dynamic behavior of a
power system. It is important to understand a system both mathematically and physically
to replicate the physical system’s actual behavior. A digital model of the power system
has been developed to analyze the actual dynamics involved in the system. Dr. Steve
Schaffer of the Mathematics Department and his research group at ICASA, New Mexico
Tech developed this model at New Mexico Institute of Mining and Technology. In 1990,
P. W. Sauer and M. A. Pai published a paper on power system steady-state stability [4];
the paper presents a detailed dynamic model with fundamental features of the system,
where the algebraic equations that accompany the model are discussed in detail and are
used to develop this digital model. In this paper, the power grid model is used as an
application to perform the sensitivity analysis and test the sensitivity analysis tool.

The power system model was developed using MATLAB. The input for this model is
read from an Excel spreadsheet. The inputs to the model are the dynamic states of the
power system like resistances, torques, etc. The outputs are states of the system, such as
voltages, angles, etc. The sensitivities of the voltage parameters with respect to a few
critical input parameters were computed using the tool.

By running the power system model using a few test cases and changing one input
parameter at a time by a very small value, we computed the sensitivities of the voltages at
each bus. On analyzing the sensitivities, the power system model was seen to be stable
because the computed sensitivities were all slightly less than 1 and there were no drastic
changes in the output voltages with respect to small changes in specific inputs.

The computed sensitivities can be used to rank the critical inputs that are responsible for
a drastic change in the outputs. Sensitivities can also be used to list the outputs which
were most affected by the change in the input. With this information application
programmers can look back into the model and track down any instability if there is any.

5. Conclusion

This paper discussed how the concepts of sensitivity analysis can be used in the field of
computer science to improve the stability of computer applications. A distinction is made

New Mexico Tech

17

between mathematical and computational methods of sensitivity analysis. These methods
were also categorized as to what kind of sensitivity analysis is most suitable for a given
computer application. Both the advantages and disadvantages of the two different
methods of sensitivity analysis were discussed in detail. The paper also addressed issues
related to available automated tools, which can be used to compute the sensitivities of a
computer application, and the drawbacks associated with each type of tool.

A user-friendly semi-automated sensitivity analyzer tool was developed using the
concepts of computational method of sensitivity analysis. The tool can be used to
compute sensitivities of an application. The tool was tested running some test cases and
finally used the same tool to compute the sensitivities of a dynamic power system.

Further extensions in the field of sensitivity analysis and addition of more techniques to
compute sensitivities of computer application will be added in the future. Future work
will also focus on further standardizing the tool and testing it with more complex
applications. Further, to validate the tool, we intend to compare the sensitivities generated
by the tool for the power system with the mathematical sensitivities computed internally
in the power system code. A research group at ICASA is developing internal
mathematical sensitivity analysis for their power system model. Future work will use
results generated by that model to compare against the results generated by the tool
described in this paper.

6. References

1. Campolongo F., and R. Braddock, The use of graph theory in sensitivity analysis of
model output: A second order screening method, Reliability Engineering and System
Safety, 64, 1-12, 1999.

2. Saltelli A., Tarantola S., and K. Chan, A quantitative, model independent method for
global sensitivity analysis of model output, Technometrics, 41, 39-56, 1999.

3. Sastry S. Isukapalli and Panos G. Georgopoulos, Computational Methods for
Sensitivity and Uncertainty Analysis for Environmental and Biological Models,
EPA/600/R-01-068, December 2001.

4. Sauer P.W. and Pai M.A, Power system steady-state stability and the load-flow
Jacobean, IEEE Transactions on power systems, volume 5, No. 4, 1990.

5. Sauer P.W. and Pai M.A, Power system dynamics and stability, Prentice Hall, 1998.

6. lan A. Haskins and Magnus Akke, Analysis of the Nordel Power Grid Distribution of
January 1, 1997 Using Trajectory Sensitivities, IEEE Transactions on Power Systems,
Vol. 14, No. 3, August 1999.

7. H. Christopher Frey, Amirhossein Mokhtari and Tanwir Danish, Evaluation of
Selected Sensitivity Analysis Methods Based Upon Applications to Two Food Safety
Process Risk Models, Office of Risk Assessment and Cost-Benefit Analysis, U.S.
Department of Agriculture, September 2003.

8. lan A. Haskins, Nonlinear Dynamic Model Evaluation from Disturbance
Measurements, IEEE Transactions of Power Systems, Vol.16, No. 4, November
2001.

New Mexico Tech

10.
11.

12.

13.

14.

15.
16.

18

http://www.ubmail.ubalt.edu/~harsham/ref/RefSim.htm
http://sensitivity-analysis.jrc.cec.eu.int

ATHERTON R.W., Shainker R.B. and Ducot E.R. On the Statistical Sensitivity
Analysis of Models for Chemical Kinetics AIChE Journal (1971), 21(3), 441-447.

Andres T., Sampling methods and sensitivity analysis for large parameter sets,
Journal of Statistics Computation and Simulation, 57, 77-110, 1997.

Arsham H., Sensitivity and optimization of computer simulation models, Modeling
and Simulation, Instrument Society of America, 19, 1835-1842, 1988.

ADOL-C: A Package for the Automatic Differentiation of Algorithms Written in
C/CH+.

http://www.mcs.anl.gov/autodiff/adic.html

http://www.mcs.anl.gov/adifor

New Mexico Tech

