
Lab 0: Introduction to Java Programming

Problem 1: Fizz Razz Buzz
Write a program called Fizz.java that loops over each number from 1 to 100, and does the
following:

● If the number is a multiple of 3, print “Fizz”
● If the number is a multiple of 4, print “Razz”
● If the number is a multiple of 5, print “Buzz”
● If the number is a multiple of 3 and 4, print “FizzRazz”
● If the number is a multiple of 4 and 5, print “RazzBuzz”
● If the number is a multiple of 3 and 5, print “FizzBuzz”
● If the number is a multiple of 3, 4 and 5, print “FizzRazzBuzz”
● Otherwise just print the number

Problem 2: Rock Paper Scissors
This is another problem inspired by children’s games. Both players choose one of “Rock”,
“Paper”, and “Scissors” to play against each other. Rock beats Scissors, Scissors beats Paper,
and Paper beats Rock. Write a Java program called RPS.java that plays Rock Paper Scissors
against the user in a while loop

Problem 3: Guessing Game
Write a program called Guess.java, that implements the guessing game, “I am thinking of a
number between x and y.”

Use a Scanner to prompt the user for the lower and upper bounds of the number they’re
thinking of, and correct the error if y < x (i.e. swap the numbers). Use a binary search algorithm
to iteratively guess what number they are thinking of. On each guess, prompt the user to see
whether your guess is less than, greater than, or equal to their number. When the user responds
that the guess was correct, print the number of guesses the program made and then exit.

Lab 1: Working with Objects

Problem 1: Geometry
Define classes: Point and Rectangle based on the UML diagrams:

Create the Circle class based on the following skeleton code and draw the UML diagram

Lab 2: Encapsulation and Reusing Code

Problem 1: Geometry
Implement the Point, Rectangle, and Circle based on the UML diagrams

Problem 2: Temperature
Implement the Temperature class based on the UML diagram:

Lab 3: Inheritance

Problem 3: More Geometry
Implement the following classes:

Lab 5: Interfaces

Problem 1: Even More Geometry!
Implement the following interfaces

Movable

Cloning
Also add the interface Cloneable to both Point and Shape. Since Point contains only primitive
types, it does not need a custom implementation of clone().

For both Rectangle.java and Circle.java, write the clone() method so that it does a deep copy.
When you clone a shape object, it should also clone new copies of any Points within that object.
This way moving a point in the new copy will not change the position of the original shape.

Comparator
Add two new classes, ShapeAreaComparator.java and ShapePerimeterComparator.java, both
of which implement the interface Comparator<Shape>.

The first class implements a compare() method that takes two Shapes, and returns -1, 0, or 1 if
the area() of the first shape is less than, equal to, or greater than that of the second shape,
(respectively).

The second class does the same thing, but compares the shapes based on their perimeter()
instead of their area().

Lab 6: Generic Classes and Data Structures

Problem 1: Binary Search Tree
For this problem, you will write a Binary Search Tree to store a sorted data. Your class should
follow this template:

Here, Node is an inner class which is managed by the outer BinarySearchTree class. It can
contain its own and methods to help the outer class insert, search for, and remove elements
from the tree:

Lab 7: Graphics Programming

Problem 1: Draw Shape
Create a small helper class, DrawShape.java, to draw shapes onto a Graphics2D surface. You
will use this code in the next problems. You will have to import classes from your geometry
package, last seen in Homework 5. The class contains three static methods:

drawPoint() takes a Point and draws a point at that position on the Graphics2D object. Draw the
point using the given color, but set the color back to its original value afterward (save a copy of
the original color before you start drawing).

Note: The builtin Graphics2D object doesn’t have a drawPoint() method. Instead, you might use
drawLine() to draw a line of length 1, or drawOval() to draw a circle with a radius of 1 – the
implementation is up to you.

drawRectangle() takes a Rectangle and uses the Graphics2D’s drawRect() method to draw its
outline to the surface. Draw the rectangle using the given order, but set the color back to its
original value after drawing it.

Note: The arguments to drawRect() are (x, y, width, height), not (x1, y1, x2, y2). drawCircle()
takes a Circle and uses the Graphics2D’s fillOval() method to draw the circle in the given color.
Draw the rectangle using the given order, but set the color back to its original value after
drawing it.

Note: The fillOval() method takes arguments (x, y, width, height), but x and y represent the lower
left corner of the oval’s bounding box, not the center!

Lab 8: Interaction and Event Handling

Problem 1: Clock Timer

The clock timer is composed with ClockFace and ClockFrame classes:

ClockFace
ClockFace.java is the same as in the previous assignment, except for the addition of two new
methods.

tick() moves the time forward by one second, then calls repaint(). Increment second, but if the
result is 60 set it to 0 and increment minute. If the minute is then 60, set it to 0 and increment
hour. And when hour gets to 24, wrap it around to 0.

setTimeZone() takes a timezone object, (from java.util.TimeZone), and sets the hour, minute,
and second to the current local time in that time zone. To do that, you can pass the timezone to
TimeZone.setDefault(), then get the time again from LocalTime.now(). Use
TimeZone.getDefault() to save the system timezone before overwriting it, and set it back to its
original value before exiting the method. Call repaint() after setting the time.

ClockFrame
ClockFrame inherits from JFrame. As in the previous version, it adds a ClockFace to the main
window, and a JLabel containing the default timezone to the top of the frame. The private
attributes clock and tzLabel should store these two components.

The next step is to create a new Timer object, to call clock.tick() once every second (1000 ms).
The first argument to the Timer constructor is the delay, in milliseconds, to wait between events.
The second argument is an instance of ActionListener – the code in its actionPerformed()
method will run every time the timer goes off.

You can set up the ActionListener by adding a new inner class to the project. Alternatively, you
can use an anonymous class 1 to instantiate an instance of the interface on the fly.

Add a new JPanel to the SOUTH of the ClockFrame, and add three JButtons to the panel. Each
button will correspond to a different timezone ID (like "America/Denver" or "Europe/London").
You can choose any three timezone IDs you want, as long as they’re valid. The buttons should
each have an ActionListener, to do two things when the button is clicked:

1. Set the timezone of the clock to the timezone of the button
2. Set the text of the tzLabel to the display name of the button’s time zone

